Spaces:
Sleeping
Sleeping
import os | |
import re | |
import requests | |
import torch | |
import streamlit as st | |
from langchain_huggingface import HuggingFaceEndpoint | |
from langchain_core.prompts import PromptTemplate | |
from langchain_core.output_parsers import StrOutputParser | |
from transformers import pipeline | |
from langdetect import detect | |
# β Check for GPU or Default to CPU | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"β Using device: {device}") | |
# β Environment Variables | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
if HF_TOKEN is None: | |
raise ValueError("HF_TOKEN is not set. Please add it to your environment variables.") | |
NASA_API_KEY = os.getenv("NASA_API_KEY") | |
if NASA_API_KEY is None: | |
raise ValueError("NASA_API_KEY is not set. Please add it to your environment variables.") | |
# β Set Up Streamlit | |
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="π") | |
# β Ensure Session State Variables (Maintains Chat History) | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}] | |
if "response_ready" not in st.session_state: | |
st.session_state.response_ready = False | |
if "follow_up" not in st.session_state: | |
st.session_state.follow_up = "" | |
# β Initialize Hugging Face Model (CPU/GPU Compatible) | |
def get_llm_hf_inference(model_id="meta-llama/Llama-2-7b-chat-hf", max_new_tokens=800, temperature=0.3): | |
return HuggingFaceEndpoint( | |
repo_id=model_id, | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, | |
token=HF_TOKEN, | |
task="text-generation", | |
device=-1 if device == "cpu" else 0 | |
) | |
# β NASA API Function | |
def get_nasa_apod(): | |
url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}" | |
response = requests.get(url) | |
if response.status_code == 200: | |
data = response.json() | |
return data.get("url", ""), data.get("title", ""), data.get("explanation", "") | |
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now." | |
# β Sentiment Analysis (Now Uses Explicit Device) | |
sentiment_analyzer = pipeline( | |
"sentiment-analysis", | |
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english", | |
device=-1 if device == "cpu" else 0 | |
) | |
def analyze_sentiment(user_text): | |
result = sentiment_analyzer(user_text)[0] | |
return result['label'] | |
# β Intent Detection | |
def predict_action(user_text): | |
if "NASA" in user_text.lower() or "space" in user_text.lower(): | |
return "nasa_info" | |
return "general_query" | |
# β Ensure English Responses (Fixed Detection Error) | |
def ensure_english(text): | |
"""Ensures the response is in English, preventing false language detection errors.""" | |
try: | |
detected_lang = detect(text) | |
if detected_lang == "en": | |
return text # β It's in English, return as-is | |
except: | |
pass # π₯ Ignore detection errors, assume English | |
return "β οΈ Sorry, I only respond in English. Can you rephrase your question?" | |
# β Main Response Function (Fixed History & Language Issues) | |
def get_response(system_message, user_text, max_new_tokens=800): | |
"""Generates a response and ensures conversation history is updated.""" | |
chat_history = st.session_state.chat_history # β Get Chat History | |
# β Store User Input in Chat History BEFORE Generating Response | |
chat_history.append({'role': 'user', 'content': user_text}) | |
# β Detect Intent (NASA vs General AI chat) | |
action = predict_action(user_text) | |
if action == "nasa_info": | |
nasa_url, nasa_title, nasa_explanation = get_nasa_apod() | |
response = f"**{nasa_title}**\n\n{nasa_explanation}" | |
follow_up = generate_follow_up(user_text) | |
# β Append to chat history | |
chat_history.append({'role': 'assistant', 'content': response}) | |
chat_history.append({'role': 'assistant', 'content': follow_up}) | |
st.session_state.chat_history = chat_history | |
return response, follow_up, nasa_url | |
# β Format Conversation History for Model Input | |
formatted_chat_history = "\n".join(f"{msg['role']}: {msg['content']}" for msg in chat_history) | |
# β Invoke Hugging Face Model | |
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.3) | |
prompt = PromptTemplate.from_template( | |
"[INST] You are a helpful AI assistant.\n\nCurrent Conversation:\n{chat_history}\n\n" | |
"User: {user_text}.\n [/INST]\n" | |
"AI: Provide a detailed explanation with depth. Use a conversational tone." | |
"π¨ Answer **only in English**." | |
"\nHAL:" | |
) | |
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content') | |
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=formatted_chat_history)) | |
response = response.split("HAL:")[-1].strip() if "HAL:" in response else response.strip() | |
# β Prevent False Language Errors | |
response = ensure_english(response) | |
if not response: | |
response = "I'm sorry, but I couldn't generate a response. Can you rephrase your question?" | |
follow_up = generate_follow_up(user_text) | |
# β Append Responses to Chat History | |
chat_history.append({'role': 'assistant', 'content': response}) | |
chat_history.append({'role': 'assistant', 'content': follow_up}) | |
st.session_state.chat_history = chat_history | |
return response, follow_up, None | |
# β Streamlit UI | |
st.title("π HAL - NASA AI Assistant") | |
# β Justify all chatbot responses | |
st.markdown(""" | |
<style> | |
.user-msg, .assistant-msg { | |
padding: 10px; | |
border-radius: 10px; | |
margin-bottom: 5px; | |
width: fit-content; | |
max-width: 80%; | |
text-align: justify; | |
} | |
.user-msg { background-color: #696969; color: white; } | |
.assistant-msg { background-color: #333333; color: white; } | |
.container { display: flex; flex-direction: column; align-items: flex-start; } | |
@media (max-width: 600px) { .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; } } | |
</style> | |
""", unsafe_allow_html=True) | |
# β Display Chat History | |
for message in st.session_state.chat_history: | |
st.markdown(f"**{message['role'].capitalize()}**: {message['content']}") | |
# β Chat Input | |
user_input = st.chat_input("Type your message here...") | |
if user_input: | |
response, follow_up, image_url = get_response("You are a helpful AI assistant.", user_input) | |
if response: | |
st.markdown(f"**HAL**: {response}") | |
if follow_up: | |
st.markdown(f"**HAL**: {follow_up}") | |
if image_url: | |
st.image(image_url, caption="NASA Image of the Day") | |