File size: 6,650 Bytes
a3e0475
ffbccbb
fc5f1c7
e653ea8
d6f5773
fc5f1c7
a3e0475
 
5c095c6
1755fdf
e653ea8
 
 
1755fdf
fe8e64b
546ff54
ab8074b
e653ea8
546ff54
ab8074b
e653ea8
 
546ff54
ab8074b
e653ea8
b256ef1
5c095c6
1755fdf
5c095c6
594a593
e653ea8
 
 
 
391ca85
1755fdf
304d58b
5c095c6
a3e0475
 
 
258dcf5
e653ea8
1755fdf
a3e0475
 
e653ea8
 
 
 
 
 
 
 
 
 
 
 
 
1755fdf
e653ea8
 
 
 
 
 
 
 
 
 
 
 
1755fdf
e653ea8
1755fdf
e653ea8
 
1755fdf
 
e653ea8
1755fdf
 
 
e653ea8
1755fdf
74bfc30
1755fdf
74bfc30
1755fdf
 
 
 
74bfc30
1755fdf
e653ea8
 
 
 
 
 
594a593
74bfc30
 
 
1755fdf
d6afb7a
594a593
74bfc30
 
 
 
304d58b
74bfc30
594a593
f77e366
594a593
1755fdf
e653ea8
594a593
 
 
 
74bfc30
594a593
 
1755fdf
e653ea8
 
 
 
 
792148f
fe8e64b
1755fdf
74bfc30
 
1755fdf
74bfc30
d6afb7a
594a593
e653ea8
594a593
 
304d58b
 
 
885b84d
5b0e575
304d58b
 
 
 
885b84d
304d58b
885b84d
 
 
 
304d58b
 
5b0e575
304d58b
f8490df
 
1755fdf
f8490df
d6afb7a
47a03de
594a593
b54b055
d6afb7a
e653ea8
 
1755fdf
e653ea8
 
1755fdf
e653ea8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
import re
import requests
import torch
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline
from langdetect import detect

# βœ… Check for GPU or Default to CPU
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"βœ… Using device: {device}")

# βœ… Environment Variables
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
    raise ValueError("HF_TOKEN is not set. Please add it to your environment variables.")

NASA_API_KEY = os.getenv("NASA_API_KEY")
if NASA_API_KEY is None:
    raise ValueError("NASA_API_KEY is not set. Please add it to your environment variables.")

# βœ… Set Up Streamlit
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="πŸš€")

# βœ… Ensure Session State Variables (Maintains Chat History)
if "chat_history" not in st.session_state:
    st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
if "response_ready" not in st.session_state:
    st.session_state.response_ready = False
if "follow_up" not in st.session_state:
    st.session_state.follow_up = ""

# βœ… Initialize Hugging Face Model (CPU/GPU Compatible)
def get_llm_hf_inference(model_id="meta-llama/Llama-2-7b-chat-hf", max_new_tokens=800, temperature=0.3):
    return HuggingFaceEndpoint(
        repo_id=model_id,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        token=HF_TOKEN,
        task="text-generation",
        device=-1 if device == "cpu" else 0
    )

# βœ… NASA API Function
def get_nasa_apod():
    url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
    response = requests.get(url)
    if response.status_code == 200:
        data = response.json()
        return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
    return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now."

# βœ… Sentiment Analysis (Now Uses Explicit Device)
sentiment_analyzer = pipeline(
    "sentiment-analysis",
    model="distilbert/distilbert-base-uncased-finetuned-sst-2-english",
    device=-1 if device == "cpu" else 0
)

def analyze_sentiment(user_text):
    result = sentiment_analyzer(user_text)[0]
    return result['label']

# βœ… Intent Detection
def predict_action(user_text):
    if "NASA" in user_text.lower() or "space" in user_text.lower():
        return "nasa_info"
    return "general_query"

# βœ… Ensure English Responses (Fixed Detection Error)
def ensure_english(text):
    """Ensures the response is in English, preventing false language detection errors."""
    try:
        detected_lang = detect(text)
        if detected_lang == "en":
            return text  # βœ… It's in English, return as-is
    except:
        pass  # πŸ”₯ Ignore detection errors, assume English
    
    return "⚠️ Sorry, I only respond in English. Can you rephrase your question?"

# βœ… Main Response Function (Fixed History & Language Issues)
def get_response(system_message, user_text, max_new_tokens=800):
    """Generates a response and ensures conversation history is updated."""
    
    chat_history = st.session_state.chat_history  # βœ… Get Chat History

    # βœ… Store User Input in Chat History BEFORE Generating Response
    chat_history.append({'role': 'user', 'content': user_text})

    # βœ… Detect Intent (NASA vs General AI chat)
    action = predict_action(user_text)

    if action == "nasa_info":
        nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
        response = f"**{nasa_title}**\n\n{nasa_explanation}"
        follow_up = generate_follow_up(user_text)

        # βœ… Append to chat history
        chat_history.append({'role': 'assistant', 'content': response})
        chat_history.append({'role': 'assistant', 'content': follow_up})
        st.session_state.chat_history = chat_history
        return response, follow_up, nasa_url

    # βœ… Format Conversation History for Model Input
    formatted_chat_history = "\n".join(f"{msg['role']}: {msg['content']}" for msg in chat_history)

    # βœ… Invoke Hugging Face Model
    hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.3)

    prompt = PromptTemplate.from_template(
        "[INST] You are a helpful AI assistant.\n\nCurrent Conversation:\n{chat_history}\n\n"
        "User: {user_text}.\n [/INST]\n"
        "AI: Provide a detailed explanation with depth. Use a conversational tone."
        "🚨 Answer **only in English**."
        "\nHAL:"
    )

    chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
    response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=formatted_chat_history))
    response = response.split("HAL:")[-1].strip() if "HAL:" in response else response.strip()

    # βœ… Prevent False Language Errors
    response = ensure_english(response)

    if not response:
        response = "I'm sorry, but I couldn't generate a response. Can you rephrase your question?"

    follow_up = generate_follow_up(user_text)

    # βœ… Append Responses to Chat History
    chat_history.append({'role': 'assistant', 'content': response})
    chat_history.append({'role': 'assistant', 'content': follow_up})
    st.session_state.chat_history = chat_history

    return response, follow_up, None

# βœ… Streamlit UI
st.title("πŸš€ HAL - NASA AI Assistant")

# βœ… Justify all chatbot responses
st.markdown("""
    <style>
    .user-msg, .assistant-msg {
        padding: 10px;
        border-radius: 10px;
        margin-bottom: 5px;
        width: fit-content;
        max-width: 80%;
        text-align: justify;
    }
    .user-msg { background-color: #696969; color: white; }
    .assistant-msg { background-color: #333333; color: white; }
    .container { display: flex; flex-direction: column; align-items: flex-start; }
    @media (max-width: 600px) { .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; } }
    </style>
""", unsafe_allow_html=True)


# βœ… Display Chat History
for message in st.session_state.chat_history:
    st.markdown(f"**{message['role'].capitalize()}**: {message['content']}")

# βœ… Chat Input
user_input = st.chat_input("Type your message here...")

if user_input:
    response, follow_up, image_url = get_response("You are a helpful AI assistant.", user_input)

    if response:
        st.markdown(f"**HAL**: {response}")

    if follow_up:
        st.markdown(f"**HAL**: {follow_up}")

    if image_url:
        st.image(image_url, caption="NASA Image of the Day")