NASA-AI-Chatbot / app.py
CCockrum's picture
Update app.py
e673788 verified
raw
history blame
5.95 kB
import os
import streamlit as st
from langdetect import detect
import torch
# Check if GPU is available but don't load anything yet
device = "cuda" if torch.cuda.is_available() else "cpu"
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="๐Ÿš€")
# Initialize session state variables
if "chat_history" not in st.session_state:
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you with NASA-related information today?"}]
if "model_loaded" not in st.session_state:
st.session_state.model_loaded = False
# Load environment variables
def load_api_keys():
hf_token = os.getenv("HF_TOKEN")
nasa_api_key = os.getenv("NASA_API_KEY")
missing_keys = []
if not hf_token:
missing_keys.append("HF_TOKEN")
if not nasa_api_key:
missing_keys.append("NASA_API_KEY")
return hf_token, nasa_api_key, missing_keys
# Lazy-load the model only when needed
def load_model():
with st.spinner("Loading AI model... This may take a moment."):
try:
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
hf_token, _, _ = load_api_keys()
# Use a smaller model if you're having resource issues
llm = HuggingFaceEndpoint(
repo_id="meta-llama/Llama-2-7b-chat-hf", # Consider a smaller model like "distilroberta-base"
max_new_tokens=800,
temperature=0.3,
token=hf_token,
task="text-generation",
device=-1 if device == "cpu" else 0
)
st.session_state.model_loaded = True
st.session_state.llm = llm
st.session_state.prompt = PromptTemplate.from_template(
"[INST] You are HAL, a NASA AI assistant with deep knowledge of space, astronomy, and NASA missions. "
"Answer concisely and accurately.\n\n"
"CONTEXT:\n{chat_history}\n"
"\nLATEST USER INPUT:\nUser: {user_text}\n"
"[END CONTEXT]\n"
"Assistant:"
)
return True
except Exception as e:
st.error(f"Error loading model: {str(e)}")
return False
# Ensure English responses
def ensure_english(text):
try:
if text and len(text) > 5: # Only check if there's meaningful text
detected_lang = detect(text)
if detected_lang != "en":
return "โš ๏ธ Sorry, I only respond in English. Can you rephrase your question?"
return text
except:
return text # Return original if detection fails
# Get response from the model
def get_response(user_text):
if not st.session_state.model_loaded:
if not load_model():
return "Sorry, I'm having trouble loading. Please try again or check your environment setup."
try:
# Prepare conversation history
filtered_history = "\n".join(
f"{msg['role'].capitalize()}: {msg['content']}"
for msg in st.session_state.chat_history[-5:]
)
from langchain_core.output_parsers import StrOutputParser
# Create and invoke the chat pipeline
chat = st.session_state.prompt | st.session_state.llm.bind(skip_prompt=True) | StrOutputParser()
response = chat.invoke({
"user_text": user_text,
"chat_history": filtered_history
})
# Clean up response
response = response.split("HAL:")[-1].strip() if "HAL:" in response else response.strip()
response = ensure_english(response)
if not response:
response = "I'm sorry, but I couldn't generate a response. Can you rephrase your question?"
return response
except Exception as e:
return f"I encountered an error: {str(e)}. Please try again with a different question."
# UI Styling
st.markdown("""
<style>
.user-msg, .assistant-msg {
padding: 11px;
border-radius: 10px;
margin-bottom: 5px;
width: fit-content;
max-width: 80%;
text-align: justify;
}
.user-msg { background-color: #696969; color: white; margin-left: auto; }
.assistant-msg { background-color: #333333; color: white; }
.container { display: flex; flex-direction: column; }
@media (max-width: 600px) { .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; } }
</style>
""", unsafe_allow_html=True)
# Main UI
st.title("๐Ÿš€ HAL - NASA AI Assistant")
# Check for API keys before allowing interaction
hf_token, nasa_api_key, missing_keys = load_api_keys()
if missing_keys:
st.error(f"Missing environment variables: {', '.join(missing_keys)}. Please set them to use this application.")
else:
# Chat interface
user_input = st.chat_input("Ask me about NASA, space missions, or astronomy...")
if user_input:
# Add user message to history
st.session_state.chat_history.append({"role": "user", "content": user_input})
# Get AI response
with st.spinner("Thinking..."):
response = get_response(user_input)
st.session_state.chat_history.append({"role": "assistant", "content": response})
# Display chat history
st.markdown("<div class='container'>", unsafe_allow_html=True)
for message in st.session_state.chat_history:
if message["role"] == "user":
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
else:
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)