Spaces:
Sleeping
Sleeping
import os | |
import re | |
import requests | |
import torch | |
import streamlit as st | |
from langchain_huggingface import HuggingFaceEndpoint | |
from langchain_core.prompts import PromptTemplate | |
from langchain_core.output_parsers import StrOutputParser | |
from transformers import pipeline | |
from langdetect import detect # Ensure this package is installed | |
# β Check for GPU or Default to CPU | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"β Using device: {device}") # Debugging info | |
# β Environment Variables | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
if HF_TOKEN is None: | |
raise ValueError("HF_TOKEN is not set. Please add it to your environment variables.") | |
NASA_API_KEY = os.getenv("NASA_API_KEY") | |
if NASA_API_KEY is None: | |
raise ValueError("NASA_API_KEY is not set. Please add it to your environment variables.") | |
# β Set Up Streamlit | |
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="π") | |
# β Initialize Session State Variables (Ensuring Chat History Persists) | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}] | |
if "response_ready" not in st.session_state: | |
st.session_state.response_ready = False | |
if "follow_up" not in st.session_state: | |
st.session_state.follow_up = "" | |
# β Initialize Hugging Face Model (Explicitly Set to CPU/GPU) | |
def get_llm_hf_inference(model_id="mistralai/Mistral-7B-Instruct-v0.3", max_new_tokens=512, temperature=0.7): | |
return HuggingFaceEndpoint( | |
repo_id=model_id, | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, | |
token=HF_TOKEN, | |
task="text-generation", | |
device=-1 if device == "cpu" else 0 # β Force CPU (-1) or GPU (0) | |
) | |
# β NASA API Function | |
def get_nasa_apod(): | |
url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}" | |
response = requests.get(url) | |
if response.status_code == 200: | |
data = response.json() | |
return data.get("url", ""), data.get("title", ""), data.get("explanation", "") | |
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now." | |
# β Sentiment Analysis (Now Uses Explicit Device) | |
sentiment_analyzer = pipeline( | |
"sentiment-analysis", | |
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english", | |
device=-1 if device == "cpu" else 0 # β Force CPU (-1) or GPU (0) | |
) | |
def analyze_sentiment(user_text): | |
result = sentiment_analyzer(user_text)[0] | |
return result['label'] | |
# β Intent Detection | |
def predict_action(user_text): | |
if "NASA" in user_text.lower() or "space" in user_text.lower(): | |
return "nasa_info" | |
return "general_query" | |
# β Ensure English Responses | |
def ensure_english(text): | |
try: | |
detected_lang = detect(text) | |
if detected_lang != "en": | |
return "β οΈ Sorry, I only respond in English. Can you rephrase your question?" | |
except: | |
return "β οΈ Language detection failed. Please ask your question again." | |
return text | |
# β Follow-Up Question Generation | |
def generate_follow_up(user_text): | |
"""Generates a structured follow-up question in a concise format.""" | |
prompt_text = ( | |
f"Given the user's question: '{user_text}', generate a SHORT follow-up question in the format: " | |
"'Would you like to learn more about [related topic] or explore something else?'. " | |
"Ensure it's concise and structured exactly as requested without extra commentary." | |
) | |
hf = get_llm_hf_inference(max_new_tokens=30, temperature=0.6) # π₯ Lower temp for consistency | |
output = hf.invoke(input=prompt_text).strip() | |
# β Extract the relevant part using regex to remove unwanted symbols or truncations | |
cleaned_output = re.sub(r"```|''|\"", "", output).strip() | |
# β Ensure output is formatted correctly | |
if "Would you like to learn more about" not in cleaned_output: | |
cleaned_output = "Would you like to explore another related topic or ask about something else?" | |
return cleaned_output | |
# β Main Response Function | |
def get_response(system_message, chat_history, user_text, max_new_tokens=512): | |
action = predict_action(user_text) | |
# β Handle NASA-Specific Queries | |
if action == "nasa_info": | |
nasa_url, nasa_title, nasa_explanation = get_nasa_apod() | |
response = f"**{nasa_title}**\n\n{nasa_explanation}" | |
follow_up = generate_follow_up(user_text) | |
chat_history.extend([ | |
{'role': 'user', 'content': user_text}, | |
{'role': 'assistant', 'content': response}, | |
{'role': 'assistant', 'content': follow_up} | |
]) | |
return response, follow_up, chat_history, nasa_url | |
# β Invoke Hugging Face Model | |
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9) | |
filtered_history = "\n".join(f"{msg['role']}: {msg['content']}" for msg in chat_history) | |
prompt = PromptTemplate.from_template( | |
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n" | |
"User: {user_text}.\n [/INST]\n" | |
"AI: Provide a detailed explanation. Use a conversational tone. " | |
"π¨ Answer **only in English**." | |
"\nHAL:" | |
) | |
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content') | |
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history)) | |
response = response.split("HAL:")[-1].strip() if "HAL:" in response else response.strip() | |
response = ensure_english(response) | |
if not response: | |
response = "I'm sorry, but I couldn't generate a response. Can you rephrase your question?" | |
follow_up = generate_follow_up(user_text) | |
chat_history.extend([ | |
{'role': 'user', 'content': user_text}, | |
{'role': 'assistant', 'content': response}, | |
{'role': 'assistant', 'content': follow_up} | |
]) | |
return response, follow_up, chat_history, None | |
# β Streamlit UI | |
st.title("π HAL - NASA AI Assistant") | |
# β Justify all chatbot responses | |
st.markdown(""" | |
<style> | |
.user-msg, .assistant-msg { | |
padding: 10px; | |
border-radius: 10px; | |
margin-bottom: 5px; | |
width: fit-content; | |
max-width: 80%; | |
text-align: justify; | |
} | |
.user-msg { background-color: #696969; color: white; } | |
.assistant-msg { background-color: #333333; color: white; } | |
.container { display: flex; flex-direction: column; align-items: flex-start; } | |
@media (max-width: 600px) { .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; } } | |
</style> | |
""", unsafe_allow_html=True) | |
# β Reset Chat Button | |
if st.sidebar.button("Reset Chat"): | |
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}] | |
st.session_state.response_ready = False | |
st.session_state.follow_up = "" | |
# β Chat UI | |
user_input = st.chat_input("Type your message here...") | |
if user_input: | |
response, follow_up, st.session_state.chat_history, image_url = get_response( | |
system_message="You are a helpful AI assistant.", | |
user_text=user_input, | |
chat_history=st.session_state.chat_history | |
) | |
if response: | |
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True) | |
if follow_up: | |
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {follow_up}</div>", unsafe_allow_html=True) | |
if image_url: | |
st.image(image_url, caption="NASA Image of the Day") | |
st.session_state.response_ready = True | |
if st.session_state.response_ready and st.session_state.follow_up: | |
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {st.session_state.follow_up}</div>", unsafe_allow_html=True) | |
st.session_state.response_ready = False | |