Spaces:
Sleeping
Sleeping
# hal_bot.py | |
import os | |
import re | |
import requests | |
import torch | |
import streamlit as st | |
from langchain_community.llms import HuggingFaceEndpoint | |
from langchain.llms import HuggingFacePipeline | |
from langchain_core.prompts import PromptTemplate | |
from langchain_core.output_parsers import StrOutputParser | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline | |
from langdetect import detect | |
# β Switched to Flan-T5 Model | |
MODEL_ID = "google/flan-t5-large" | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_ID) | |
pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1) | |
# β Device setup | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"β Using device: {device}") | |
# β Environment Variables | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
if HF_TOKEN is None: | |
raise ValueError("HF_TOKEN is not set. Please add it to your environment variables.") | |
NASA_API_KEY = os.getenv("NASA_API_KEY") | |
if NASA_API_KEY is None: | |
raise ValueError("NASA_API_KEY is not set. Please add it to your environment variables.") | |
# β Streamlit Setup | |
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="π") | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}] | |
def load_local_llm(model_id): | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_id) | |
return pipeline("text2text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1) | |
llm = HuggingFacePipeline(pipeline=pipe) | |
def get_llm_hf_inference(model_id=MODEL_ID, max_new_tokens=500, temperature=0.3): | |
return HuggingFaceEndpoint( | |
repo_id=model_id, | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, | |
token=HF_TOKEN, | |
task="text2text-generation", | |
device=-1 if device == "cpu" else 0 | |
) | |
def ensure_english(text): | |
try: | |
detected_lang = detect(text) | |
if detected_lang != "en": | |
return "β οΈ Sorry, I only respond in English. Can you rephrase your question?" | |
except: | |
return "β οΈ Language detection failed. Please ask your question again." | |
return text | |
def get_response(system_message, chat_history, user_text, max_new_tokens=500): | |
filtered_history = "\n".join( | |
f"{msg['role'].capitalize()}: {msg['content']}" for msg in chat_history[-5:] | |
) | |
prompt = PromptTemplate.from_template( | |
""" | |
You are a helpful NASA AI assistant. | |
Answer concisely and clearly based on the conversation history and the user's latest message. | |
Conversation History: | |
{chat_history} | |
User: {user_text} | |
Assistant: | |
""" | |
) | |
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.3) | |
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content') | |
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history)) | |
response = response.strip() | |
response = ensure_english(response) | |
if not response: | |
response = "I'm sorry, but I couldn't generate a response. Can you rephrase your question?" | |
chat_history.append({'role': 'user', 'content': user_text}) | |
chat_history.append({'role': 'assistant', 'content': response}) | |
return response, chat_history[-10:] | |
st.title("π HAL - NASA AI Assistant") | |
st.markdown(""" | |
<style> | |
.user-msg, .assistant-msg { | |
padding: 11px; | |
border-radius: 10px; | |
margin-bottom: 5px; | |
width: fit-content; | |
max-width: 80%; | |
text-align: justify; | |
} | |
.user-msg { background-color: #696969; color: white; } | |
.assistant-msg { background-color: #333333; color: white; } | |
.container { display: flex; flex-direction: column; align-items: flex-start; } | |
@media (max-width: 600px) { .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; } } | |
</style> | |
""", unsafe_allow_html=True) | |
user_input = st.chat_input("Type your message here...") | |
if user_input: | |
response, st.session_state.chat_history = get_response( | |
system_message="You are a helpful AI assistant.", | |
user_text=user_input, | |
chat_history=st.session_state.chat_history | |
) | |
st.markdown("<div class='container'>", unsafe_allow_html=True) | |
for message in st.session_state.chat_history: | |
if message["role"] == "user": | |
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True) | |
else: | |
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True) | |
st.markdown("</div>", unsafe_allow_html=True) | |