Spaces:
Sleeping
Sleeping
File size: 4,862 Bytes
627a6b9 a3e0475 a9e4498 e673788 a9e4498 42a0358 59d18ff a9e4498 59d18ff 627a6b9 e653ea8 39ae770 627a6b9 e653ea8 627a6b9 a9e4498 627a6b9 b256ef1 5c095c6 a53e6ab a9e4498 a53e6ab 39ae770 627a6b9 59d18ff 627a6b9 a9e4498 627a6b9 a9e4498 627a6b9 a9e4498 a53e6ab a9e4498 a53e6ab a9e4498 627a6b9 a9e4498 627a6b9 a9e4498 627a6b9 a9e4498 627a6b9 a9e4498 a53e6ab 627a6b9 a9e4498 627a6b9 a9e4498 a53e6ab a9e4498 a53e6ab a9e4498 a53e6ab a9e4498 a53e6ab a9e4498 627a6b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
# hal_bot.py
import os
import re
import requests
import torch
import streamlit as st
from langchain_community.llms import HuggingFaceEndpoint
from langchain.llms import HuggingFacePipeline
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from langdetect import detect
# β
Switched to Flan-T5 Model
MODEL_ID = "google/flan-t5-large"
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_ID)
pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
# β
Device setup
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"β
Using device: {device}")
# β
Environment Variables
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
raise ValueError("HF_TOKEN is not set. Please add it to your environment variables.")
NASA_API_KEY = os.getenv("NASA_API_KEY")
if NASA_API_KEY is None:
raise ValueError("NASA_API_KEY is not set. Please add it to your environment variables.")
# β
Streamlit Setup
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="π")
if "chat_history" not in st.session_state:
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
def load_local_llm(model_id):
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
return pipeline("text2text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
llm = HuggingFacePipeline(pipeline=pipe)
def get_llm_hf_inference(model_id=MODEL_ID, max_new_tokens=500, temperature=0.3):
return HuggingFaceEndpoint(
repo_id=model_id,
max_new_tokens=max_new_tokens,
temperature=temperature,
token=HF_TOKEN,
task="text2text-generation",
device=-1 if device == "cpu" else 0
)
def ensure_english(text):
try:
detected_lang = detect(text)
if detected_lang != "en":
return "β οΈ Sorry, I only respond in English. Can you rephrase your question?"
except:
return "β οΈ Language detection failed. Please ask your question again."
return text
def get_response(system_message, chat_history, user_text, max_new_tokens=500):
filtered_history = "\n".join(
f"{msg['role'].capitalize()}: {msg['content']}" for msg in chat_history[-5:]
)
prompt = PromptTemplate.from_template(
"""
You are a helpful NASA AI assistant.
Answer concisely and clearly based on the conversation history and the user's latest message.
Conversation History:
{chat_history}
User: {user_text}
Assistant:
"""
)
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.3)
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
response = response.strip()
response = ensure_english(response)
if not response:
response = "I'm sorry, but I couldn't generate a response. Can you rephrase your question?"
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
return response, chat_history[-10:]
st.title("π HAL - NASA AI Assistant")
st.markdown("""
<style>
.user-msg, .assistant-msg {
padding: 11px;
border-radius: 10px;
margin-bottom: 5px;
width: fit-content;
max-width: 80%;
text-align: justify;
}
.user-msg { background-color: #696969; color: white; }
.assistant-msg { background-color: #333333; color: white; }
.container { display: flex; flex-direction: column; align-items: flex-start; }
@media (max-width: 600px) { .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; } }
</style>
""", unsafe_allow_html=True)
user_input = st.chat_input("Type your message here...")
if user_input:
response, st.session_state.chat_history = get_response(
system_message="You are a helpful AI assistant.",
user_text=user_input,
chat_history=st.session_state.chat_history
)
st.markdown("<div class='container'>", unsafe_allow_html=True)
for message in st.session_state.chat_history:
if message["role"] == "user":
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
else:
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
|