CCockrum commited on
Commit
d282502
·
verified ·
1 Parent(s): e3d3d36

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -74
app.py CHANGED
@@ -8,16 +8,7 @@ from langchain_core.prompts import PromptTemplate
8
  from langchain_core.output_parsers import StrOutputParser
9
  from transformers import pipeline
10
 
11
- # Use environment variables for keys
12
- HF_TOKEN = os.getenv("HF_TOKEN")
13
- if HF_TOKEN is None:
14
- raise ValueError("HF_TOKEN environment variable not set. Please set it in your Hugging Face Space settings.")
15
-
16
- NASA_API_KEY = os.getenv("NASA_API_KEY")
17
- if NASA_API_KEY is None:
18
- raise ValueError("NASA_API_KEY environment variable not set. Please set it in your Hugging Face Space settings.")
19
-
20
- # Set up Streamlit UI
21
  st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="🚀")
22
 
23
  # --- Initialize Session State Variables ---
@@ -41,12 +32,12 @@ def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7)
41
  repo_id=model_id,
42
  max_new_tokens=max_new_tokens,
43
  temperature=temperature,
44
- token=HF_TOKEN,
45
  task="text-generation"
46
  )
47
 
48
  def get_nasa_apod():
49
- url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
50
  response = requests.get(url)
51
  if response.status_code == 200:
52
  data = response.json()
@@ -59,38 +50,37 @@ def analyze_sentiment(user_text):
59
  return result['label']
60
 
61
  def predict_action(user_text):
62
- if "NASA" in user_text or "space" in user_text:
63
  return "nasa_info"
64
  return "general_query"
65
 
66
  def generate_follow_up(user_text):
67
  """
68
- Generates two variant follow-up questions and randomly selects one.
69
- It also cleans up any unwanted quotation marks or extra meta commentary.
70
  """
71
  prompt_text = (
72
- f"Based on the user's question: '{user_text}', generate two concise, friendly follow-up questions "
73
- "that invite further discussion. For example, one might be 'Would you like to know more about the six types of quarks?' "
74
- "and another might be 'Would you like to explore another aspect of quantum physics?' Do not include extra commentary."
75
  )
76
- hf = get_llm_hf_inference(max_new_tokens=80, temperature=0.9)
77
  output = hf.invoke(input=prompt_text).strip()
78
- variants = re.split(r"\n|[;]+", output)
79
- cleaned = [v.strip(' "\'') for v in variants if v.strip()]
80
- if not cleaned:
81
- cleaned = ["Would you like to explore this topic further?"]
82
- return random.choice(cleaned)
 
83
 
84
  def get_response(system_message, chat_history, user_text, max_new_tokens=256):
85
  """
86
- Generates HAL's answer with depth and a follow-up question.
87
- The prompt instructs the model to provide a detailed explanation and then generate a follow-up.
88
- If the answer comes back empty, a fallback answer is used.
89
  """
90
  sentiment = analyze_sentiment(user_text)
91
  action = predict_action(user_text)
92
 
93
- # Extract style instruction if present
94
  style_instruction = ""
95
  lower_text = user_text.lower()
96
  if "in the voice of" in lower_text or "speaking as" in lower_text:
@@ -117,27 +107,21 @@ def get_response(system_message, chat_history, user_text, max_new_tokens=256):
117
 
118
  style_clause = style_instruction if style_instruction else ""
119
 
120
- # Instruct the model to generate a detailed, in-depth answer.
121
  prompt = PromptTemplate.from_template(
122
  (
123
  "[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
124
  "User: {user_text}.\n [/INST]\n"
125
- "AI: Please provide a detailed explanation in depth. "
126
- "Ensure your response covers the topic thoroughly and is written in a friendly, conversational style, "
127
- "starting with a phrase like 'Certainly!', 'Of course!', or 'Great question!'." + style_clause +
128
  "\nHAL:"
129
  )
130
  )
131
 
132
  chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
133
  response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
134
- # Remove any extra markers if present.
135
  response = response.split("HAL:")[-1].strip()
136
-
137
- # Fallback in case the generated answer is empty
138
  if not response:
139
  response = "Certainly, here is an in-depth explanation: [Fallback explanation]."
140
-
141
  chat_history.append({'role': 'user', 'content': user_text})
142
  chat_history.append({'role': 'assistant', 'content': response})
143
 
@@ -160,36 +144,14 @@ if st.sidebar.button("Reset Chat"):
160
  st.session_state.follow_up = ""
161
  st.experimental_rerun()
162
 
163
- st.markdown("""
164
- <style>
165
- .user-msg {
166
- background-color: #696969;
167
- color: white;
168
- padding: 10px;
169
- border-radius: 10px;
170
- margin-bottom: 5px;
171
- width: fit-content;
172
- max-width: 80%;
173
- }
174
- .assistant-msg {
175
- background-color: #333333;
176
- color: white;
177
- padding: 10px;
178
- border-radius: 10px;
179
- margin-bottom: 5px;
180
- width: fit-content;
181
- max-width: 80%;
182
- }
183
- .container {
184
- display: flex;
185
- flex-direction: column;
186
- align-items: flex-start;
187
- }
188
- @media (max-width: 600px) {
189
- .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; }
190
- }
191
- </style>
192
- """, unsafe_allow_html=True)
193
 
194
  user_input = st.chat_input("Type your message here...")
195
 
@@ -203,11 +165,3 @@ if user_input:
203
  st.image(image_url, caption="NASA Image of the Day")
204
  st.session_state.follow_up = follow_up
205
  st.session_state.response_ready = True
206
-
207
- st.markdown("<div class='container'>", unsafe_allow_html=True)
208
- for message in st.session_state.chat_history:
209
- if message["role"] == "user":
210
- st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
211
- else:
212
- st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
213
- st.markdown("</div>", unsafe_allow_html=True)
 
8
  from langchain_core.output_parsers import StrOutputParser
9
  from transformers import pipeline
10
 
11
+ # Must be the first Streamlit command!
 
 
 
 
 
 
 
 
 
12
  st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="🚀")
13
 
14
  # --- Initialize Session State Variables ---
 
32
  repo_id=model_id,
33
  max_new_tokens=max_new_tokens,
34
  temperature=temperature,
35
+ token=os.getenv("HF_TOKEN"),
36
  task="text-generation"
37
  )
38
 
39
  def get_nasa_apod():
40
+ url = f"https://api.nasa.gov/planetary/apod?api_key={os.getenv('NASA_API_KEY')}"
41
  response = requests.get(url)
42
  if response.status_code == 200:
43
  data = response.json()
 
50
  return result['label']
51
 
52
  def predict_action(user_text):
53
+ if "nasa" in user_text.lower() or "space" in user_text.lower():
54
  return "nasa_info"
55
  return "general_query"
56
 
57
  def generate_follow_up(user_text):
58
  """
59
+ Generates one concise, friendly follow-up question related to the user's input.
60
+ The prompt instructs the model to output a single question without extra commentary.
61
  """
62
  prompt_text = (
63
+ f"Generate one concise, friendly follow-up question related to the topic of the user's question: '{user_text}'. "
64
+ "The output should be only the question, with no extra text."
 
65
  )
66
+ hf = get_llm_hf_inference(max_new_tokens=60, temperature=0.9)
67
  output = hf.invoke(input=prompt_text).strip()
68
+ # If the output is too short or empty, return a default fallback question.
69
+ if len(output) < 10:
70
+ return "Would you like to explore this topic further?"
71
+ # Clean the output from any extraneous quotes.
72
+ follow_up = output.strip(' "\'')
73
+ return follow_up
74
 
75
  def get_response(system_message, chat_history, user_text, max_new_tokens=256):
76
  """
77
+ Generates HAL's response with a detailed explanation and a follow-up question.
78
+ Style instructions (e.g. "in the voice of a physicist") are appended if present.
 
79
  """
80
  sentiment = analyze_sentiment(user_text)
81
  action = predict_action(user_text)
82
 
83
+ # Extract style instruction if present.
84
  style_instruction = ""
85
  lower_text = user_text.lower()
86
  if "in the voice of" in lower_text or "speaking as" in lower_text:
 
107
 
108
  style_clause = style_instruction if style_instruction else ""
109
 
 
110
  prompt = PromptTemplate.from_template(
111
  (
112
  "[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
113
  "User: {user_text}.\n [/INST]\n"
114
+ "AI: Please provide a detailed, in-depth answer in a friendly, conversational tone. "
115
+ "Begin with a phrase like 'Certainly!', 'Of course!', or 'Great question!'." + style_clause +
 
116
  "\nHAL:"
117
  )
118
  )
119
 
120
  chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
121
  response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
 
122
  response = response.split("HAL:")[-1].strip()
 
 
123
  if not response:
124
  response = "Certainly, here is an in-depth explanation: [Fallback explanation]."
 
125
  chat_history.append({'role': 'user', 'content': user_text})
126
  chat_history.append({'role': 'assistant', 'content': response})
127
 
 
144
  st.session_state.follow_up = ""
145
  st.experimental_rerun()
146
 
147
+ # Render the chat history.
148
+ st.markdown("<div class='container'>", unsafe_allow_html=True)
149
+ for message in st.session_state.chat_history:
150
+ if message["role"] == "user":
151
+ st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
152
+ else:
153
+ st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
154
+ st.markdown("</div>", unsafe_allow_html=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155
 
156
  user_input = st.chat_input("Type your message here...")
157
 
 
165
  st.image(image_url, caption="NASA Image of the Day")
166
  st.session_state.follow_up = follow_up
167
  st.session_state.response_ready = True