Spaces:
Sleeping
Sleeping
import os | |
import re | |
import requests | |
import torch | |
import streamlit as st | |
from langchain_huggingface import HuggingFaceEndpoint | |
from langchain_core.prompts import PromptTemplate | |
from langchain_core.output_parsers import StrOutputParser | |
from transformers import pipeline | |
from langdetect import detect # Ensure this package is installed | |
# β Check for GPU or Default to CPU | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"β Using device: {device}") # Debugging info | |
# β Environment Variables | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
if HF_TOKEN is None: | |
raise ValueError("HF_TOKEN is not set. Please add it to your environment variables.") | |
NASA_API_KEY = os.getenv("NASA_API_KEY") | |
if NASA_API_KEY is None: | |
raise ValueError("NASA_API_KEY is not set. Please add it to your environment variables.") | |
# β Set Up Streamlit | |
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="π") | |
# β Initialize Session State Variables (Ensuring Chat History Persists) | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}] | |
if "listening" not in st.session_state: | |
st.session_state.listening = False | |
# β Initialize Hugging Face Model (Explicitly Set to CPU/GPU) | |
def get_llm_hf_inference(model_id="meta-llama/Llama-2-7b-chat-hf", max_new_tokens=800, temperature=0.3): | |
return HuggingFaceEndpoint( | |
repo_id=model_id, | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, # π₯ Lowered temperature for more factual and structured responses | |
token=HF_TOKEN, | |
task="text-generation", | |
device=-1 if device == "cpu" else 0 # β Force CPU (-1) or GPU (0) | |
) | |
# β Ensure English Responses | |
def ensure_english(text): | |
try: | |
detected_lang = detect(text) | |
if detected_lang != "en": | |
return "β οΈ Sorry, I only respond in English. Can you rephrase your question?" | |
except: | |
return "β οΈ Language detection failed. Please ask your question again." | |
return text | |
# β Main Response Function (Fixing Repetition & Context) | |
def get_response(system_message, chat_history, user_text, max_new_tokens=800): | |
# β Ensure conversation history is included correctly | |
filtered_history = "\n".join( | |
f"{msg['role'].capitalize()}: {msg['content']}" | |
for msg in chat_history[-5:] # β Only keep the last 5 exchanges to prevent overflow | |
) | |
prompt = PromptTemplate.from_template( | |
"[INST] You are a highly knowledgeable AI assistant. Answer concisely, avoid repetition, and structure responses well." | |
"\n\nCONTEXT:\n{chat_history}\n" | |
"\nLATEST USER INPUT:\nUser: {user_text}\n" | |
"\n[END CONTEXT]\n" | |
"Assistant:" | |
) | |
# β Invoke Hugging Face Model | |
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.3) # π₯ Lowered temperature | |
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content') | |
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history)) | |
# Clean up the response - remove any "HAL:" prefix if present | |
response = response.split("HAL:")[-1].strip() if "HAL:" in response else response.strip() | |
response = ensure_english(response) | |
if not response: | |
response = "I'm sorry, but I couldn't generate a response. Can you rephrase your question?" | |
# β Update conversation history | |
chat_history.append({'role': 'user', 'content': user_text}) | |
chat_history.append({'role': 'assistant', 'content': response}) | |
# β Keep only last 10 exchanges to prevent unnecessary repetition | |
return response, chat_history[-10:] | |
# β Streamlit UI | |
st.title("π HAL - NASA AI Assistant") | |
# β Add styles and speech recognition JavaScript | |
st.markdown(""" | |
<style> | |
.user-msg, .assistant-msg { | |
padding: 11px; | |
border-radius: 10px; | |
margin-bottom: 5px; | |
width: fit-content; | |
max-width: 80%; | |
text-align: justify; | |
} | |
.user-msg { background-color: #696969; color: white; } | |
.assistant-msg { background-color: #333333; color: white; } | |
.container { display: flex; flex-direction: column; align-items: flex-start; } | |
.speech-button { | |
background-color: #4CAF50; | |
border: none; | |
color: white; | |
padding: 10px 15px; | |
text-align: center; | |
text-decoration: none; | |
display: inline-block; | |
font-size: 16px; | |
margin: 4px 2px; | |
cursor: pointer; | |
border-radius: 12px; | |
} | |
.speak-button { | |
background-color: #2196F3; | |
border: none; | |
color: white; | |
padding: 5px 10px; | |
text-align: center; | |
text-decoration: none; | |
display: inline-block; | |
font-size: 12px; | |
margin: 2px 2px; | |
cursor: pointer; | |
border-radius: 12px; | |
} | |
@media (max-width: 600px) { .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; } } | |
</style> | |
<script> | |
// Speech Recognition Setup | |
let recognition; | |
let isListening = false; | |
function setupSpeechRecognition() { | |
try { | |
window.SpeechRecognition = window.SpeechRecognition || window.webkitSpeechRecognition; | |
recognition = new SpeechRecognition(); | |
recognition.lang = 'en-US'; | |
recognition.interimResults = false; | |
recognition.maxAlternatives = 1; | |
recognition.onresult = function(event) { | |
const speechResult = event.results[0][0].transcript; | |
document.getElementById('speech-result').value = speechResult; | |
document.getElementById('submit-speech').click(); | |
}; | |
recognition.onerror = function(event) { | |
console.error('Speech recognition error:', event.error); | |
isListening = false; | |
updateMicButton(); | |
}; | |
recognition.onend = function() { | |
isListening = false; | |
updateMicButton(); | |
}; | |
return true; | |
} catch (error) { | |
console.error('Speech recognition not supported:', error); | |
return false; | |
} | |
} | |
function toggleSpeechRecognition() { | |
if (!recognition) { | |
if (!setupSpeechRecognition()) { | |
alert('Speech recognition is not supported in your browser.'); | |
return; | |
} | |
} | |
if (isListening) { | |
recognition.stop(); | |
isListening = false; | |
} else { | |
recognition.start(); | |
isListening = true; | |
} | |
updateMicButton(); | |
} | |
function updateMicButton() { | |
const micButton = document.getElementById('mic-button'); | |
if (micButton) { | |
micButton.textContent = isListening ? 'π Stop Listening' : 'π€ Start Voice Input'; | |
micButton.style.backgroundColor = isListening ? '#f44336' : '#4CAF50'; | |
} | |
} | |
// Text-to-Speech functionality | |
function speakText(text) { | |
const utterance = new SpeechSynthesisUtterance(text); | |
utterance.lang = 'en-US'; | |
utterance.pitch = 1; | |
utterance.rate = 1; | |
window.speechSynthesis.speak(utterance); | |
} | |
// Initialize after the page loads | |
document.addEventListener('DOMContentLoaded', function() { | |
setupSpeechRecognition(); | |
}); | |
</script> | |
""", unsafe_allow_html=True) | |
# Add voice control components | |
col1, col2 = st.columns([4, 1]) | |
with col1: | |
user_input = st.chat_input("Type your message here...") | |
with col2: | |
st.markdown(""" | |
<button id="mic-button" onclick="toggleSpeechRecognition()" class="speech-button"> | |
π€ Start Voice Input | |
</button> | |
<input type="hidden" id="speech-result"> | |
<button id="submit-speech" style="display:none;"></button> | |
""", unsafe_allow_html=True) | |
# Handle form for speech input (hidden) | |
speech_result = st.text_input("Speech Result", key="speech_input", label_visibility="collapsed") | |
if speech_result: | |
user_input = speech_result | |
# Reset the speech input | |
st.session_state.speech_input = "" | |
if user_input: | |
# Get response and update chat history | |
response, st.session_state.chat_history = get_response( | |
system_message="You are a helpful AI assistant specializing in NASA and space information.", | |
user_text=user_input, | |
chat_history=st.session_state.chat_history | |
) | |
# β Display chat history with speak buttons | |
st.markdown("<div class='container'>", unsafe_allow_html=True) | |
for i, message in enumerate(st.session_state.chat_history): | |
if message["role"] == "user": | |
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True) | |
else: | |
speak_button = f""" | |
<button onclick="speakText(`{message['content'].replace('`', '\'').replace('"', '\'')}`)" class="speak-button"> | |
π Speak | |
</button> | |
""" | |
st.markdown( | |
f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']} {speak_button}</div>", | |
unsafe_allow_html=True | |
) | |
st.markdown("</div>", unsafe_allow_html=True) | |
# Add JavaScript event listener for the submit button | |
components_js = """ | |
<script> | |
document.getElementById('submit-speech').addEventListener('click', function() { | |
const speechResult = document.getElementById('speech-result').value; | |
if (speechResult) { | |
// Update the Streamlit text input with the speech result | |
const textInputs = document.querySelectorAll('input[type="text"]'); | |
if (textInputs.length > 0) { | |
const lastInput = textInputs[0]; | |
lastInput.value = speechResult; | |
lastInput.dispatchEvent(new Event('input', { bubbles: true })); | |
// Find and click the submit button | |
setTimeout(() => { | |
const buttons = document.querySelectorAll('button[kind="primaryForm"]'); | |
for (const button of buttons) { | |
if (button.textContent.includes('Submit')) { | |
button.click(); | |
break; | |
} | |
} | |
}, 100); | |
} | |
} | |
}); | |
</script> | |
""" | |
st.components.v1.html(components_js, height=0) |