File size: 7,778 Bytes
dd3973b
d207c48
dd3973b
 
3f6deab
 
dd3973b
 
3f6deab
 
dd3973b
3f6deab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd3973b
3f6deab
 
 
 
dd3973b
 
3f6deab
 
 
 
dd3973b
3f6deab
 
 
 
 
 
dd3973b
3f6deab
 
dd3973b
3f6deab
 
dd3973b
 
 
3f6deab
 
 
 
 
 
 
 
 
 
 
 
dd3973b
3f6deab
 
dd3973b
3f6deab
 
 
 
 
 
 
 
 
dd3973b
3f6deab
 
 
 
dd3973b
3f6deab
 
 
 
 
 
 
dd3973b
 
3f6deab
 
 
 
 
 
 
 
 
 
 
dd3973b
3f6deab
 
 
 
 
 
 
dd3973b
3f6deab
 
 
 
dd3973b
 
 
3f6deab
 
 
dd3973b
3f6deab
 
 
 
 
 
 
 
 
 
 
 
dd3973b
3f6deab
 
 
 
dd3973b
3f6deab
 
 
 
dd3973b
3f6deab
 
 
 
dd3973b
3f6deab
 
dd3973b
 
3f6deab
 
dd3973b
3f6deab
 
 
 
 
 
 
 
dd3973b
3f6deab
 
 
dd3973b
 
3f6deab
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# app.py
import os
from datetime import datetime, timedelta

import pandas as pd
import plotly.express as px
import streamlit as st
from fetch import fetch_asteroid_data

# App title and description
st.title("\U0001F320 NASA Near-Earth Objects Tracker")
st.markdown("""
This application uses NASA's NeoWs (Near Earth Object Web Service) API to retrieve and visualize 
information about asteroids and other near-Earth objects.
""")

# Date selection
st.sidebar.header("Search Parameters")
today = datetime.now()
default_start_date = today.date()
default_end_date = (today + timedelta(days=7)).date()

start_date = st.sidebar.date_input("Start Date", default_start_date)
end_date = st.sidebar.date_input("End Date", default_end_date)

# Validate date range
date_diff = (end_date - start_date).days
if date_diff > 7:
    st.warning("\u26a0\ufe0f NASA API limits date range to 7 days or less. Adjusting to a 7-day period.")
    end_date = start_date + timedelta(days=7)

# Search button
if st.sidebar.button("Search Asteroids"):
    data = fetch_asteroid_data(start_date, end_date)

    if data:
        st.session_state.asteroid_data = data
        st.session_state.searched = True
    else:
        st.error("Failed to fetch asteroid data. Please check your environment setup.")

# Display results if search was performed
if 'searched' in st.session_state and st.session_state.searched:
    data = st.session_state.asteroid_data
    element_count = data.get('element_count', 0)
    st.success(f"Found {element_count} near-Earth objects between {start_date} and {end_date}")

    neo_data = data.get('near_earth_objects', {})
    all_asteroids = []

    for date, asteroids in neo_data.items():
        for asteroid in asteroids:
            if not asteroid['close_approach_data']:
                continue

            asteroid_info = {
                'id': asteroid['id'],
                'name': asteroid['name'],
                'date': date,
                'diameter_min_km': asteroid['estimated_diameter']['kilometers']['estimated_diameter_min'],
                'diameter_max_km': asteroid['estimated_diameter']['kilometers']['estimated_diameter_max'],
                'is_hazardous': asteroid['is_potentially_hazardous_asteroid'],
                'close_approach_date': asteroid['close_approach_data'][0]['close_approach_date'],
                'miss_distance_km': float(asteroid['close_approach_data'][0]['miss_distance']['kilometers']),
                'relative_velocity_kph': float(asteroid['close_approach_data'][0]['relative_velocity']['kilometers_per_hour'])
            }
            all_asteroids.append(asteroid_info)

    df = pd.DataFrame(all_asteroids)
    df['avg_diameter_km'] = (df['diameter_min_km'] + df['diameter_max_km']) / 2

    st.header("Summary Statistics")
    col1, col2, col3 = st.columns(3)
    with col1:
        st.metric("Total Asteroids", len(df))
    with col2:
        hazardous_count = df['is_hazardous'].sum()
        st.metric("Potentially Hazardous", f"{hazardous_count} ({hazardous_count/len(df)*100:.1f}%)")
    with col3:
        st.metric("Avg. Size", f"{df['avg_diameter_km'].mean():.2f} km")

    st.header("Visualizations")
    viz_tab1, viz_tab2 = st.tabs(["Size Distribution", "Miss Distance"])
    with viz_tab1:
        fig1 = px.histogram(
            df, x="avg_diameter_km", color="is_hazardous",
            title="Size Distribution of Near-Earth Objects",
            labels={"avg_diameter_km": "Average Diameter (km)", "is_hazardous": "Potentially Hazardous"},
            color_discrete_map={True: "red", False: "green"}
        )
        st.plotly_chart(fig1, use_container_width=True)
    with viz_tab2:
        fig2 = px.scatter(
            df, x="miss_distance_km", y="avg_diameter_km", color="is_hazardous",
            size="relative_velocity_kph", hover_name="name",
            title="Miss Distance vs. Size (with velocity)",
            labels={
                "miss_distance_km": "Miss Distance (km)",
                "avg_diameter_km": "Average Diameter (km)",
                "is_hazardous": "Potentially Hazardous",
                "relative_velocity_kph": "Velocity (km/h)"
            },
            color_discrete_map={True: "red", False: "green"}
        )
        fig2.update_layout(xaxis_type="log")
        st.plotly_chart(fig2, use_container_width=True)

    st.header("Detailed Asteroid Data")
    st.subheader("Filters")
    col1, col2 = st.columns(2)
    with col1:
        show_hazardous = st.checkbox("Show only hazardous asteroids", False)
    with col2:
        size_threshold = st.slider("Minimum size (km)", 0.0, max(df['avg_diameter_km']), 0.0, 0.01)

    filtered_df = df.copy()
    if show_hazardous:
        filtered_df = filtered_df[filtered_df['is_hazardous'] == True]
    filtered_df = filtered_df[filtered_df['avg_diameter_km'] >= size_threshold]

    sort_by = st.selectbox("Sort by", [
        "close_approach_date", "name", "avg_diameter_km", "miss_distance_km", "relative_velocity_kph"])
    sort_order = st.radio("Sort order", ["Ascending", "Descending"], horizontal=True)
    ascending = sort_order == "Ascending"
    filtered_df = filtered_df.sort_values(by=sort_by, ascending=ascending)

    display_df = filtered_df[[
        'name', 'close_approach_date', 'avg_diameter_km', 
        'miss_distance_km', 'relative_velocity_kph', 'is_hazardous'
    ]].rename(columns={
        'name': 'Name',
        'close_approach_date': 'Approach Date',
        'avg_diameter_km': 'Diameter (km)',
        'miss_distance_km': 'Miss Distance (km)',
        'relative_velocity_kph': 'Velocity (km/h)',
        'is_hazardous': 'Hazardous'
    })
    st.dataframe(display_df, use_container_width=True)

    st.subheader("Individual Asteroid Details")
    selected_asteroid = st.selectbox("Select an asteroid", filtered_df['name'].tolist())
    if selected_asteroid:
        asteroid_details = filtered_df[filtered_df['name'] == selected_asteroid].iloc[0]
        st.subheader(f"\U0001F311 {selected_asteroid}")
        col1, col2 = st.columns(2)
        with col1:
            st.write("**ID:**", asteroid_details['id'])
            st.write("**Approach Date:**", asteroid_details['close_approach_date'])
            st.write("**Hazardous:**", "Yes \u26a0\ufe0f" if asteroid_details['is_hazardous'] else "No \u2713")
        with col2:
            st.write("**Diameter Range:**", f"{asteroid_details['diameter_min_km']:.3f} - {asteroid_details['diameter_max_km']:.3f} km")
            st.write("**Miss Distance:**", f"{asteroid_details['miss_distance_km']:,.0f} km")
            st.write("**Relative Velocity:**", f"{asteroid_details['relative_velocity_kph']:,.0f} km/h")

        hazard_level = 0
        if asteroid_details['is_hazardous']:
            size_factor = min(asteroid_details['avg_diameter_km'] / 0.5, 1)
            distance_factor = min(1000000 / asteroid_details['miss_distance_km'], 1)
            hazard_level = (size_factor * 0.7 + distance_factor * 0.3) * 100
        st.progress(int(hazard_level), text=f"Relative Hazard Level: {hazard_level:.1f}%")

        st.write("### Context")
        if hazard_level > 70:
            st.warning("This asteroid is classified as potentially hazardous and is relatively large and close.")
        elif hazard_level > 40:
            st.info("This asteroid is classified as potentially hazardous but poses minimal risk at this time.")
        else:
            st.success("This asteroid is not considered hazardous and poses no risk to Earth.")

# Sidebar info
st.sidebar.markdown("---")
st.sidebar.markdown("""
### About NASA NeoWs API
The [Near Earth Object Web Service](https://api.nasa.gov) provides asteroid data based on closest approach to Earth.
To get an API key, visit [api.nasa.gov](https://api.nasa.gov).
""")