File size: 20,150 Bytes
6e44663
 
 
6b54893
6e44663
 
 
 
 
 
 
 
 
 
 
 
 
2e487ec
6e44663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5887dc1
 
6e44663
5887dc1
 
 
6e44663
 
 
5887dc1
6e44663
5887dc1
 
6e44663
5887dc1
6e44663
5887dc1
 
6e44663
5887dc1
6e44663
 
 
 
 
 
530d498
 
 
6e44663
530d498
6e44663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e487ec
6e44663
 
 
 
 
 
 
2e487ec
6e44663
 
 
 
 
 
 
 
 
2e487ec
6e44663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e487ec
6e44663
 
 
 
 
2e487ec
6e44663
2e487ec
6e44663
 
 
 
2e487ec
6e44663
 
 
 
 
 
 
 
 
 
 
 
 
 
2e487ec
 
 
 
 
 
 
 
 
6e44663
2e487ec
 
 
6e44663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e487ec
6e44663
2e487ec
6e44663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e487ec
6e44663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
import gradio as gr
import pandas as pd
import numpy as np
import tempfile
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import requests
from datetime import datetime, timedelta
import warnings
import json
warnings.filterwarnings('ignore')

class EnhancedOceanClimateAgent:
    def __init__(self):
        self.anomaly_threshold = 2.0
        self.critical_temp_change = 1.5
 
        self.noaa_base_url = "https://api.tidesandcurrents.noaa.gov/api/prod/datagetter"
        self.noaa_stations_url = "https://api.tidesandcurrents.noaa.gov/mdapi/prod/webapi/stations.json"
        
        # Popular NOAA stations for different regions
        self.default_stations = {
            "San Francisco, CA": "9414290",
            "New York, NY": "8518750", 
            "Miami, FL": "8723214",
            "Seattle, WA": "9447130",
            "Boston, MA": "8443970",
            "Los Angeles, CA": "9410660",
            "Galveston, TX": "8771450",
            "Charleston, SC": "8665530"
        }
    
    def get_noaa_data(self, station_id, product, start_date, end_date, units="metric"):
        """Fetch data from NOAA API"""
        params = {
            'product': product,
            'application': 'OceanClimateAgent',
            'begin_date': start_date.strftime('%Y%m%d'),
            'end_date': end_date.strftime('%Y%m%d'),
            'station': station_id,
            'time_zone': 'gmt',
            'units': units,
            'format': 'json'
        }
        
        try:
            print(f"πŸ“‘ Requesting {product} data for station {station_id}")
            print("πŸ• Date range:", start_date.strftime('%Y-%m-%d'), "to", end_date.strftime('%Y-%m-%d'))
            response = requests.get(self.noaa_base_url, params=params, timeout=30)
            
            print(f"πŸ” Status code: {response.status_code}")
            
            if response.status_code == 200:
                data = response.json()
                if 'data' in data:
                    print(f"βœ… Data received: {len(data['data'])} records for {product}")
                    return pd.DataFrame(data['data'])
                elif 'error' in data:
                    print(f"❌ NOAA error: {data['error'].get('message')}")
                else:
                    print(f"❌ Unknown response structure: {data}")
            else:
                print(f"❌ API HTTP error {response.status_code}: {response.text}")
                
            return None

    def get_comprehensive_station_data(self, station_name, days_back=30):
        """Get comprehensive data from a NOAA station"""
        station_id = self.default_stations.get(station_name)
        if not station_id:
            return None, "Station not found"
        
        # Ensure end_date is not in the future (NOAA does not support future data)
        today = datetime.utcnow().replace(hour=0, minute=0, second=0, microsecond=0)
        end_date = min(datetime.utcnow(), today)
        start_date = end_date - timedelta(days=days_back)

        
        # Available NOAA products
        products_to_fetch = {
            'water_level': 'water_level',
            'water_temperature': 'water_temperature', 
            'air_temperature': 'air_temperature',
            'wind': 'wind',
            'air_pressure': 'air_pressure',
            'salinity': 'salinity',
            'currents': 'currents'
        }
        
        all_data = {}
        success_count = 0
        
        for product_name, product_code in products_to_fetch.items():
            data = self.get_noaa_data(station_id, product_code, start_date, end_date)
            if data is not None and not data.empty:
                all_data[product_name] = data
                success_count += 1
        
        if success_count == 0:
            return None, "No data available for this station and time period"
        
        return all_data, f"Successfully retrieved {success_count}/{len(products_to_fetch)} data types"
    
    def process_noaa_data(self, raw_data):
        """Process and combine NOAA data for analysis"""
        if not raw_data:
            return None
        
        # Process water level data (primary dataset)
        if 'water_level' in raw_data:
            df = raw_data['water_level'].copy()
            df['datetime'] = pd.to_datetime(df['t'])
            df['water_level'] = pd.to_numeric(df['v'], errors='coerce')
            
            # Add other parameters when available
            if 'water_temperature' in raw_data:
                temp_df = raw_data['water_temperature'].copy()
                temp_df['datetime'] = pd.to_datetime(temp_df['t'])
                temp_df['water_temp'] = pd.to_numeric(temp_df['v'], errors='coerce')
                df = df.merge(temp_df[['datetime', 'water_temp']], on='datetime', how='left')
            
            if 'air_temperature' in raw_data:
                air_temp_df = raw_data['air_temperature'].copy()
                air_temp_df['datetime'] = pd.to_datetime(air_temp_df['t'])
                air_temp_df['air_temp'] = pd.to_numeric(air_temp_df['v'], errors='coerce')
                df = df.merge(air_temp_df[['datetime', 'air_temp']], on='datetime', how='left')
            
            if 'wind' in raw_data:
                wind_df = raw_data['wind'].copy()
                wind_df['datetime'] = pd.to_datetime(wind_df['t'])
                wind_df['wind_speed'] = pd.to_numeric(wind_df['s'], errors='coerce')
                wind_df['wind_direction'] = pd.to_numeric(wind_df['d'], errors='coerce')
                df = df.merge(wind_df[['datetime', 'wind_speed', 'wind_direction']], on='datetime', how='left')
            
            if 'air_pressure' in raw_data:
                pressure_df = raw_data['air_pressure'].copy()
                pressure_df['datetime'] = pd.to_datetime(pressure_df['t'])
                pressure_df['air_pressure'] = pd.to_numeric(pressure_df['v'], errors='coerce')
                df = df.merge(pressure_df[['datetime', 'air_pressure']], on='datetime', how='left')
            
            if 'salinity' in raw_data:
                salinity_df = raw_data['salinity'].copy()
                salinity_df['datetime'] = pd.to_datetime(salinity_df['t'])
                salinity_df['salinity'] = pd.to_numeric(salinity_df['v'], errors='coerce')
                df = df.merge(salinity_df[['datetime', 'salinity']], on='datetime', how='left')
            
            return df
        
        return None
    
    def detect_anomalies(self, data, column, window=24):  # 24 hours for hourly data
        """Detect anomalies using rolling statistics"""
        if column not in data.columns or data[column].isna().all():
            return pd.Series([False] * len(data)), pd.Series([0] * len(data))
        
        rolling_mean = data[column].rolling(window=window, center=True, min_periods=1).mean()
        rolling_std = data[column].rolling(window=window, center=True, min_periods=1).std()
        
        # Avoid division by zero
        rolling_std = rolling_std.fillna(1)
        rolling_std = rolling_std.replace(0, 1)
        
        z_scores = np.abs((data[column] - rolling_mean) / rolling_std)
        anomalies = z_scores > self.anomaly_threshold
        
        return anomalies, z_scores
    
    def calculate_trends(self, data, column, hours=168):  # 7 days
        """Calculate trend over specified period"""
        if column not in data.columns or data[column].isna().all():
            return 0
        
        recent_data = data.tail(hours)
        if len(recent_data) < 2:
            return 0
        
        x = np.arange(len(recent_data))
        y = recent_data[column].dropna()
        
        if len(y) < 2:
            return 0
        
        x = x[:len(y)]
        slope = np.polyfit(x, y, 1)[0] if len(x) > 1 else 0
        return slope
    
    def generate_climate_analysis(self, data, station_name):
        """Generate comprehensive climate analysis"""
        if data is None or data.empty:
            return {}, []
        
        analysis = {}
        alerts = []
        
        # Water level analysis
        if 'water_level' in data.columns:
            wl_trend = self.calculate_trends(data, 'water_level')
            analysis['water_level_trend'] = wl_trend * 24  # per day
            
            if abs(wl_trend * 24) > 5:  # >5cm per day change
                alerts.append(f"Significant water level change: {wl_trend*24:.1f}cm/day at {station_name}")
        
        # Temperature analysis
        if 'water_temp' in data.columns:
            temp_trend = self.calculate_trends(data, 'water_temp')
            analysis['water_temp_trend'] = temp_trend * 24  # per day
            
            if temp_trend * 24 > 0.5:  # >0.5Β°C per day
                alerts.append(f"Rapid water temperature rise: {temp_trend*24:.2f}Β°C/day at {station_name}")
        
        # Anomaly detection
        for col in ['water_level', 'water_temp', 'wind_speed']:
            if col in data.columns:
                anomalies, z_scores = self.detect_anomalies(data, col)
                anomaly_pct = (anomalies.sum() / len(data)) * 100
                analysis[f'{col}_anomaly_frequency'] = anomaly_pct
                
                if anomaly_pct > 10:
                    alerts.append(f"High {col.replace('_', ' ')} anomaly frequency: {anomaly_pct:.1f}% at {station_name}")
        
        if not alerts:
            alerts.append(f"βœ… No significant anomalies detected at {station_name}")
        
        return analysis, alerts

# Initialize the enhanced agent
agent = EnhancedOceanClimateAgent()

def analyze_real_ocean_data(station_name, days_back, anomaly_sensitivity, use_real_data):
    """Main analysis function with real NOAA data"""
    
    agent.anomaly_threshold = anomaly_sensitivity
    
    if use_real_data:
        # Fetch real NOAA data
        raw_data, status_msg = agent.get_comprehensive_station_data(station_name, days_back)
        
        if raw_data is None:
            return None, None, None, f"Error: {status_msg}", "No alerts - data unavailable", None
        
        # Process the data
        data = agent.process_noaa_data(raw_data)
        
        if data is None or data.empty:
            return None, None, None, "No processable data available", "No alerts - data unavailable", None
        
        data_source = f"Real NOAA data from {station_name} ({status_msg})"
        
    else:
        # Use synthetic data for demonstration
        data = generate_synthetic_data(days_back)
        data_source = f"Synthetic demonstration data ({days_back} days)"
    
    # Generate analysis and alerts
    analysis, alerts = agent.generate_climate_analysis(data, station_name)
    
    # Create visualizations
    fig1 = create_main_dashboard(data, agent)
    fig2 = create_anomaly_plots(data, agent)
    fig3 = create_correlation_plot(data)
    
    # Format analysis text
    analysis_text = format_analysis_results(analysis, data_source)
    alerts_text = "\n".join([f"- {alert}" for alert in alerts])
    
    # Create CSV for download
    import tempfile

    #Create CSV
    def save_csv_temp(data):
        tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode='w', newline='', encoding='utf-8')
        data.to_csv(tmp.name, index=False)
        tmp.close()
        return tmp.name

    
    csv_file_path = save_csv_temp(data)
    return fig1, fig2, fig3, analysis_text, alerts_text, csv_file_path


def generate_synthetic_data(days):
    """Generate synthetic data for demonstration"""
    dates = pd.date_range(start=datetime.now() - timedelta(days=days), periods=days*24, freq='H')
    
    # Synthetic water level with tidal patterns
    tidal_pattern = 2 * np.sin(2 * np.pi * np.arange(len(dates)) / 12.42)  # M2 tide
    water_level = 100 + tidal_pattern + np.random.normal(0, 0.3, len(dates))
    
    # Water temperature with daily cycle
    daily_temp_cycle = 2 * np.sin(2 * np.pi * np.arange(len(dates)) / 24)
    water_temp = 15 + daily_temp_cycle + np.random.normal(0, 0.5, len(dates))
    
    # Wind patterns
    wind_speed = 5 + 3 * np.sin(2 * np.pi * np.arange(len(dates)) / (24*3)) + np.random.normal(0, 1, len(dates))
    wind_direction = 180 + 45 * np.sin(2 * np.pi * np.arange(len(dates)) / (24*2)) + np.random.normal(0, 20, len(dates))
    
    return pd.DataFrame({
        'datetime': dates,
        'water_level': water_level,
        'water_temp': water_temp,
        'wind_speed': np.maximum(0, wind_speed),
        'wind_direction': wind_direction % 360,
        'air_pressure': 1013 + np.random.normal(0, 10, len(dates))
    })

def create_main_dashboard(data, agent):
    """Create main dashboard visualization"""
    fig = make_subplots(
        rows=2, cols=2,
        subplot_titles=('Water Level', 'Water Temperature', 'Wind Speed', 'Air Pressure'),
        vertical_spacing=0.1
    )
    
    # Water Level
    if 'water_level' in data.columns:
        fig.add_trace(
            go.Scatter(x=data['datetime'], y=data['water_level'], 
                      name='Water Level', line=dict(color='blue')),
            row=1, col=1
        )
        
        # Add anomalies
        anomalies, _ = agent.detect_anomalies(data, 'water_level')
        if anomalies.any():
            anomaly_data = data[anomalies]
            fig.add_trace(
                go.Scatter(x=anomaly_data['datetime'], y=anomaly_data['water_level'],
                          mode='markers', name='Anomalies', 
                          marker=dict(color='red', size=6)),
                row=1, col=1
            )
    
    # Water Temperature
    if 'water_temp' in data.columns:
        fig.add_trace(
            go.Scatter(x=data['datetime'], y=data['water_temp'], 
                      name='Water Temp', line=dict(color='red')),
            row=1, col=2
        )
    
    # Wind Speed
    if 'wind_speed' in data.columns:
        fig.add_trace(
            go.Scatter(x=data['datetime'], y=data['wind_speed'], 
                      name='Wind Speed', line=dict(color='green')),
            row=2, col=1
        )
    
    # Air Pressure
    if 'air_pressure' in data.columns:
        fig.add_trace(
            go.Scatter(x=data['datetime'], y=data['air_pressure'], 
                      name='Air Pressure', line=dict(color='purple')),
            row=2, col=2
        )
    
    fig.update_layout(height=600, showlegend=False, title_text="Ocean and Atmospheric Data Dashboard")
    return fig

def create_anomaly_plots(data, agent):
    """Create anomaly detection plots"""
    fig = make_subplots(
        rows=1, cols=2,
        subplot_titles=('Water Level Anomalies', 'Temperature Anomalies')
    )
    
    # Water level anomalies
    if 'water_level' in data.columns:
        _, z_scores = agent.detect_anomalies(data, 'water_level')
        fig.add_trace(
            go.Scatter(x=data['datetime'], y=z_scores, 
                      mode='lines', name='Water Level Z-Score'),
            row=1, col=1
        )
        fig.add_hline(y=agent.anomaly_threshold, line_dash="dash", line_color="red", row=1, col=1)
    
    # Temperature anomalies
    if 'water_temp' in data.columns:
        _, z_scores = agent.detect_anomalies(data, 'water_temp')
        fig.add_trace(
            go.Scatter(x=data['datetime'], y=z_scores, 
                      mode='lines', name='Temperature Z-Score', line=dict(color='red')),
            row=1, col=2
        )
        fig.add_hline(y=agent.anomaly_threshold, line_dash="dash", line_color="red", row=1, col=2)
    
    fig.update_layout(height=400, showlegend=False, title_text="Anomaly Detection Analysis")
    return fig

def create_correlation_plot(data):
    """Create correlation heatmap"""
    numeric_cols = [col for col in ['water_level', 'water_temp', 'wind_speed', 'air_pressure'] 
                   if col in data.columns]
    
    if len(numeric_cols) < 2:
        # Return empty plot if insufficient data
        fig = go.Figure()
        fig.add_annotation(text="Insufficient data for correlation analysis", 
                          xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False)
        return fig
    
    corr_matrix = data[numeric_cols].corr()
    
    fig = px.imshow(corr_matrix, 
                   labels=dict(color="Correlation"),
                   color_continuous_scale='RdBu_r',
                   aspect="auto",
                   title="Parameter Correlations")
    return fig

def format_analysis_results(analysis, data_source):
    """Format analysis results for display"""
    result = f"### {data_source}\n\n**Key Trends:**\n"
    
    for key, value in analysis.items():
        if 'trend' in key:
            param = key.replace('_trend', '').replace('_', ' ').title()
            unit = 'cm/day' if 'water_level' in key else 'Β°C/day' if 'temp' in key else 'units/day'
            result += f"- {param}: {value:.3f} {unit}\n"
        elif 'anomaly_frequency' in key:
            param = key.replace('_anomaly_frequency', '').replace('_', ' ').title()
            result += f"- {param} anomalies: {value:.1f}%\n"
    
    return result

# Create Gradio interface
with gr.Blocks(title="Enhanced Ocean Climate Monitoring AI Agent", theme=gr.themes.Ocean()) as demo:
    gr.Markdown("""
    # Enhanced Ocean Climate Monitoring AI Agent
    ### Real-time Analysis with NOAA Data Integration
    
    This enhanced AI agent can fetch real ocean data from NOAA stations or use synthetic data for demonstration.
    Monitor water levels, temperature, currents, and detect climate anomalies at major coastal locations.
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### Configuration")
            station_name = gr.Dropdown(
                choices=list(agent.default_stations.keys()),
                value="San Francisco, CA",
                label="NOAA Station Location"
            )
            days_back = gr.Slider(
                minimum=7, 
                maximum=90, 
                value=30, 
                step=1,
                label="Days of Historical Data"
            )
            anomaly_sensitivity = gr.Slider(
                minimum=1.0, 
                maximum=3.0, 
                value=2.0, 
                step=0.1, 
                label="Anomaly Detection Sensitivity"
            )
            use_real_data = gr.Checkbox(
                label="Use Real NOAA Data", 
                value=True,
                info="Uncheck to use synthetic data"
            )
            analyze_btn = gr.Button("Analyze Ocean Data", variant="primary")
        
        with gr.Column(scale=2):
            gr.Markdown("### Climate Alerts")
            alerts_output = gr.Markdown()
    
    with gr.Row():
        analysis_output = gr.Markdown()
    
    with gr.Tab("Main Dashboard"):
        dashboard_plot = gr.Plot()
    
    with gr.Tab("Anomaly Detection"):
        anomaly_plot = gr.Plot()
    
    with gr.Tab("Correlations"):
        correlation_plot = gr.Plot()
    
    with gr.Tab("Data Export"):
        gr.Markdown("### Download Analyzed Data")
        csv_output = gr.File(label="Download CSV Data")
        gr.Markdown("*Note: Real NOAA data usage is subject to their terms of service*")
    
    # Set up the analysis function
    analyze_btn.click(
        fn=analyze_real_ocean_data,
        inputs=[station_name, days_back, anomaly_sensitivity, use_real_data],
        outputs=[dashboard_plot, anomaly_plot, correlation_plot, analysis_output, alerts_output, csv_output]
    )
    
    # Auto-run on startup with synthetic data
    demo.load(
        fn=analyze_real_ocean_data,
        inputs=[
            gr.Text(value="San Francisco, CA", visible=False),
            gr.Number(value=30, visible=False),
            gr.Number(value=2.0, visible=False),
            gr.Checkbox(value=False, visible=False)  # Start with synthetic data
        ],
        outputs=[dashboard_plot, anomaly_plot, correlation_plot, analysis_output, alerts_output, csv_output]
    )

if __name__ == "__main__":
    demo.launch()