Spaces:
Running
Running
File size: 20,416 Bytes
6e44663 6b54893 6e44663 b72a9ca 6e44663 2e487ec 6e44663 0a8f530 6e44663 5887dc1 b72a9ca 0a8f530 6e44663 5887dc1 0a8f530 6e44663 5887dc1 6e44663 5887dc1 6e44663 5887dc1 6e44663 5887dc1 0a8f530 5887dc1 6e44663 530d498 6e44663 530d498 6e44663 2e487ec 6e44663 2e487ec 6e44663 2e487ec 6e44663 2e487ec 6e44663 2e487ec 6e44663 2e487ec 6e44663 2e487ec 6e44663 2e487ec 6e44663 2e487ec 6e44663 2e487ec 6e44663 2e487ec 6e44663 2e487ec 6e44663 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
import gradio as gr
import pandas as pd
import numpy as np
import tempfile
import plotly.graph_objects as go
import plotly.express as px
from urllib.parse import urlencode
from plotly.subplots import make_subplots
import requests
from datetime import datetime, timedelta
import warnings
import json
warnings.filterwarnings('ignore')
class EnhancedOceanClimateAgent:
def __init__(self):
self.anomaly_threshold = 2.0
self.critical_temp_change = 1.5
self.noaa_base_url = "https://api.tidesandcurrents.noaa.gov/api/prod/datagetter"
self.noaa_stations_url = "https://api.tidesandcurrents.noaa.gov/mdapi/prod/webapi/stations.json"
# Popular NOAA stations for different regions
self.default_stations = {
"San Francisco, CA": "9414290",
"New York, NY": "8518750",
"Miami, FL": "8723214",
"Seattle, WA": "9447130",
"Boston, MA": "8443970",
"Los Angeles, CA": "9410660",
"Galveston, TX": "8771450",
"Charleston, SC": "8665530"
}
def get_noaa_data(self, station_id, product, start_date, end_date, units="metric"):
"""Fetch data from NOAA API"""
params = {
'product': product,
'application': 'OceanClimateAgent',
'begin_date': start_date.strftime('%Y%m%d'),
'end_date': end_date.strftime('%Y%m%d'),
'station': station_id,
'time_zone': 'gmt',
'units': units,
'format': 'json'
}
try:
print(f"π‘ Requesting {product} data for station {station_id}")
print("π Date range:", start_date.strftime('%Y-%m-%d'), "to", end_date.strftime('%Y-%m-%d'))
# Print full API URL for testing
full_url = f"{self.noaa_base_url}?{urlencode(params)}"
print(f"π NOAA API URL: {full_url}")
response = requests.get(self.noaa_base_url, params=params, timeout=30)
print(f"π Status code: {response.status_code}")
if response.status_code == 200:
data = response.json()
if 'data' in data:
print(f"β
Data received: {len(data['data'])} records for {product}")
return pd.DataFrame(data['data'])
elif 'error' in data:
print(f"β NOAA error: {data['error'].get('message')}")
else:
print(f"β Unknown response structure: {data}")
else:
print(f"β API HTTP error {response.status_code}: {response.text}")
except Exception as e:
print(f"β Request failed for {product}: {str(e)}")
return None
def get_comprehensive_station_data(self, station_name, days_back=30):
"""Get comprehensive data from a NOAA station"""
station_id = self.default_stations.get(station_name)
if not station_id:
return None, "Station not found"
# Ensure end_date is not in the future (NOAA does not support future data)
today = datetime.utcnow().replace(hour=0, minute=0, second=0, microsecond=0)
end_date = min(datetime.utcnow(), today)
start_date = end_date - timedelta(days=days_back)
# Available NOAA products
products_to_fetch = {
'water_level': 'water_level',
'water_temperature': 'water_temperature',
'air_temperature': 'air_temperature',
'wind': 'wind',
'air_pressure': 'air_pressure',
'salinity': 'salinity',
'currents': 'currents'
}
all_data = {}
success_count = 0
for product_name, product_code in products_to_fetch.items():
data = self.get_noaa_data(station_id, product_code, start_date, end_date)
if data is not None and not data.empty:
all_data[product_name] = data
success_count += 1
if success_count == 0:
return None, "No data available for this station and time period"
return all_data, f"Successfully retrieved {success_count}/{len(products_to_fetch)} data types"
def process_noaa_data(self, raw_data):
"""Process and combine NOAA data for analysis"""
if not raw_data:
return None
# Process water level data (primary dataset)
if 'water_level' in raw_data:
df = raw_data['water_level'].copy()
df['datetime'] = pd.to_datetime(df['t'])
df['water_level'] = pd.to_numeric(df['v'], errors='coerce')
# Add other parameters when available
if 'water_temperature' in raw_data:
temp_df = raw_data['water_temperature'].copy()
temp_df['datetime'] = pd.to_datetime(temp_df['t'])
temp_df['water_temp'] = pd.to_numeric(temp_df['v'], errors='coerce')
df = df.merge(temp_df[['datetime', 'water_temp']], on='datetime', how='left')
if 'air_temperature' in raw_data:
air_temp_df = raw_data['air_temperature'].copy()
air_temp_df['datetime'] = pd.to_datetime(air_temp_df['t'])
air_temp_df['air_temp'] = pd.to_numeric(air_temp_df['v'], errors='coerce')
df = df.merge(air_temp_df[['datetime', 'air_temp']], on='datetime', how='left')
if 'wind' in raw_data:
wind_df = raw_data['wind'].copy()
wind_df['datetime'] = pd.to_datetime(wind_df['t'])
wind_df['wind_speed'] = pd.to_numeric(wind_df['s'], errors='coerce')
wind_df['wind_direction'] = pd.to_numeric(wind_df['d'], errors='coerce')
df = df.merge(wind_df[['datetime', 'wind_speed', 'wind_direction']], on='datetime', how='left')
if 'air_pressure' in raw_data:
pressure_df = raw_data['air_pressure'].copy()
pressure_df['datetime'] = pd.to_datetime(pressure_df['t'])
pressure_df['air_pressure'] = pd.to_numeric(pressure_df['v'], errors='coerce')
df = df.merge(pressure_df[['datetime', 'air_pressure']], on='datetime', how='left')
if 'salinity' in raw_data:
salinity_df = raw_data['salinity'].copy()
salinity_df['datetime'] = pd.to_datetime(salinity_df['t'])
salinity_df['salinity'] = pd.to_numeric(salinity_df['v'], errors='coerce')
df = df.merge(salinity_df[['datetime', 'salinity']], on='datetime', how='left')
return df
return None
def detect_anomalies(self, data, column, window=24): # 24 hours for hourly data
"""Detect anomalies using rolling statistics"""
if column not in data.columns or data[column].isna().all():
return pd.Series([False] * len(data)), pd.Series([0] * len(data))
rolling_mean = data[column].rolling(window=window, center=True, min_periods=1).mean()
rolling_std = data[column].rolling(window=window, center=True, min_periods=1).std()
# Avoid division by zero
rolling_std = rolling_std.fillna(1)
rolling_std = rolling_std.replace(0, 1)
z_scores = np.abs((data[column] - rolling_mean) / rolling_std)
anomalies = z_scores > self.anomaly_threshold
return anomalies, z_scores
def calculate_trends(self, data, column, hours=168): # 7 days
"""Calculate trend over specified period"""
if column not in data.columns or data[column].isna().all():
return 0
recent_data = data.tail(hours)
if len(recent_data) < 2:
return 0
x = np.arange(len(recent_data))
y = recent_data[column].dropna()
if len(y) < 2:
return 0
x = x[:len(y)]
slope = np.polyfit(x, y, 1)[0] if len(x) > 1 else 0
return slope
def generate_climate_analysis(self, data, station_name):
"""Generate comprehensive climate analysis"""
if data is None or data.empty:
return {}, []
analysis = {}
alerts = []
# Water level analysis
if 'water_level' in data.columns:
wl_trend = self.calculate_trends(data, 'water_level')
analysis['water_level_trend'] = wl_trend * 24 # per day
if abs(wl_trend * 24) > 5: # >5cm per day change
alerts.append(f"Significant water level change: {wl_trend*24:.1f}cm/day at {station_name}")
# Temperature analysis
if 'water_temp' in data.columns:
temp_trend = self.calculate_trends(data, 'water_temp')
analysis['water_temp_trend'] = temp_trend * 24 # per day
if temp_trend * 24 > 0.5: # >0.5Β°C per day
alerts.append(f"Rapid water temperature rise: {temp_trend*24:.2f}Β°C/day at {station_name}")
# Anomaly detection
for col in ['water_level', 'water_temp', 'wind_speed']:
if col in data.columns:
anomalies, z_scores = self.detect_anomalies(data, col)
anomaly_pct = (anomalies.sum() / len(data)) * 100
analysis[f'{col}_anomaly_frequency'] = anomaly_pct
if anomaly_pct > 10:
alerts.append(f"High {col.replace('_', ' ')} anomaly frequency: {anomaly_pct:.1f}% at {station_name}")
if not alerts:
alerts.append(f"β
No significant anomalies detected at {station_name}")
return analysis, alerts
# Initialize the enhanced agent
agent = EnhancedOceanClimateAgent()
def analyze_real_ocean_data(station_name, days_back, anomaly_sensitivity, use_real_data):
"""Main analysis function with real NOAA data"""
agent.anomaly_threshold = anomaly_sensitivity
if use_real_data:
# Fetch real NOAA data
raw_data, status_msg = agent.get_comprehensive_station_data(station_name, days_back)
if raw_data is None:
return None, None, None, f"Error: {status_msg}", "No alerts - data unavailable", None
# Process the data
data = agent.process_noaa_data(raw_data)
if data is None or data.empty:
return None, None, None, "No processable data available", "No alerts - data unavailable", None
data_source = f"Real NOAA data from {station_name} ({status_msg})"
else:
# Use synthetic data for demonstration
data = generate_synthetic_data(days_back)
data_source = f"Synthetic demonstration data ({days_back} days)"
# Generate analysis and alerts
analysis, alerts = agent.generate_climate_analysis(data, station_name)
# Create visualizations
fig1 = create_main_dashboard(data, agent)
fig2 = create_anomaly_plots(data, agent)
fig3 = create_correlation_plot(data)
# Format analysis text
analysis_text = format_analysis_results(analysis, data_source)
alerts_text = "\n".join([f"- {alert}" for alert in alerts])
# Create CSV for download
import tempfile
#Create CSV
def save_csv_temp(data):
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode='w', newline='', encoding='utf-8')
data.to_csv(tmp.name, index=False)
tmp.close()
return tmp.name
csv_file_path = save_csv_temp(data)
return fig1, fig2, fig3, analysis_text, alerts_text, csv_file_path
def generate_synthetic_data(days):
"""Generate synthetic data for demonstration"""
dates = pd.date_range(start=datetime.now() - timedelta(days=days), periods=days*24, freq='H')
# Synthetic water level with tidal patterns
tidal_pattern = 2 * np.sin(2 * np.pi * np.arange(len(dates)) / 12.42) # M2 tide
water_level = 100 + tidal_pattern + np.random.normal(0, 0.3, len(dates))
# Water temperature with daily cycle
daily_temp_cycle = 2 * np.sin(2 * np.pi * np.arange(len(dates)) / 24)
water_temp = 15 + daily_temp_cycle + np.random.normal(0, 0.5, len(dates))
# Wind patterns
wind_speed = 5 + 3 * np.sin(2 * np.pi * np.arange(len(dates)) / (24*3)) + np.random.normal(0, 1, len(dates))
wind_direction = 180 + 45 * np.sin(2 * np.pi * np.arange(len(dates)) / (24*2)) + np.random.normal(0, 20, len(dates))
return pd.DataFrame({
'datetime': dates,
'water_level': water_level,
'water_temp': water_temp,
'wind_speed': np.maximum(0, wind_speed),
'wind_direction': wind_direction % 360,
'air_pressure': 1013 + np.random.normal(0, 10, len(dates))
})
def create_main_dashboard(data, agent):
"""Create main dashboard visualization"""
fig = make_subplots(
rows=2, cols=2,
subplot_titles=('Water Level', 'Water Temperature', 'Wind Speed', 'Air Pressure'),
vertical_spacing=0.1
)
# Water Level
if 'water_level' in data.columns:
fig.add_trace(
go.Scatter(x=data['datetime'], y=data['water_level'],
name='Water Level', line=dict(color='blue')),
row=1, col=1
)
# Add anomalies
anomalies, _ = agent.detect_anomalies(data, 'water_level')
if anomalies.any():
anomaly_data = data[anomalies]
fig.add_trace(
go.Scatter(x=anomaly_data['datetime'], y=anomaly_data['water_level'],
mode='markers', name='Anomalies',
marker=dict(color='red', size=6)),
row=1, col=1
)
# Water Temperature
if 'water_temp' in data.columns:
fig.add_trace(
go.Scatter(x=data['datetime'], y=data['water_temp'],
name='Water Temp', line=dict(color='red')),
row=1, col=2
)
# Wind Speed
if 'wind_speed' in data.columns:
fig.add_trace(
go.Scatter(x=data['datetime'], y=data['wind_speed'],
name='Wind Speed', line=dict(color='green')),
row=2, col=1
)
# Air Pressure
if 'air_pressure' in data.columns:
fig.add_trace(
go.Scatter(x=data['datetime'], y=data['air_pressure'],
name='Air Pressure', line=dict(color='purple')),
row=2, col=2
)
fig.update_layout(height=600, showlegend=False, title_text="Ocean and Atmospheric Data Dashboard")
return fig
def create_anomaly_plots(data, agent):
"""Create anomaly detection plots"""
fig = make_subplots(
rows=1, cols=2,
subplot_titles=('Water Level Anomalies', 'Temperature Anomalies')
)
# Water level anomalies
if 'water_level' in data.columns:
_, z_scores = agent.detect_anomalies(data, 'water_level')
fig.add_trace(
go.Scatter(x=data['datetime'], y=z_scores,
mode='lines', name='Water Level Z-Score'),
row=1, col=1
)
fig.add_hline(y=agent.anomaly_threshold, line_dash="dash", line_color="red", row=1, col=1)
# Temperature anomalies
if 'water_temp' in data.columns:
_, z_scores = agent.detect_anomalies(data, 'water_temp')
fig.add_trace(
go.Scatter(x=data['datetime'], y=z_scores,
mode='lines', name='Temperature Z-Score', line=dict(color='red')),
row=1, col=2
)
fig.add_hline(y=agent.anomaly_threshold, line_dash="dash", line_color="red", row=1, col=2)
fig.update_layout(height=400, showlegend=False, title_text="Anomaly Detection Analysis")
return fig
def create_correlation_plot(data):
"""Create correlation heatmap"""
numeric_cols = [col for col in ['water_level', 'water_temp', 'wind_speed', 'air_pressure']
if col in data.columns]
if len(numeric_cols) < 2:
# Return empty plot if insufficient data
fig = go.Figure()
fig.add_annotation(text="Insufficient data for correlation analysis",
xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False)
return fig
corr_matrix = data[numeric_cols].corr()
fig = px.imshow(corr_matrix,
labels=dict(color="Correlation"),
color_continuous_scale='RdBu_r',
aspect="auto",
title="Parameter Correlations")
return fig
def format_analysis_results(analysis, data_source):
"""Format analysis results for display"""
result = f"### {data_source}\n\n**Key Trends:**\n"
for key, value in analysis.items():
if 'trend' in key:
param = key.replace('_trend', '').replace('_', ' ').title()
unit = 'cm/day' if 'water_level' in key else 'Β°C/day' if 'temp' in key else 'units/day'
result += f"- {param}: {value:.3f} {unit}\n"
elif 'anomaly_frequency' in key:
param = key.replace('_anomaly_frequency', '').replace('_', ' ').title()
result += f"- {param} anomalies: {value:.1f}%\n"
return result
# Create Gradio interface
with gr.Blocks(title="Enhanced Ocean Climate Monitoring AI Agent", theme=gr.themes.Ocean()) as demo:
gr.Markdown("""
# Enhanced Ocean Climate Monitoring AI Agent
### Real-time Analysis with NOAA Data Integration
This enhanced AI agent can fetch real ocean data from NOAA stations or use synthetic data for demonstration.
Monitor water levels, temperature, currents, and detect climate anomalies at major coastal locations.
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Configuration")
station_name = gr.Dropdown(
choices=list(agent.default_stations.keys()),
value="San Francisco, CA",
label="NOAA Station Location"
)
days_back = gr.Slider(
minimum=7,
maximum=90,
value=30,
step=1,
label="Days of Historical Data"
)
anomaly_sensitivity = gr.Slider(
minimum=1.0,
maximum=3.0,
value=2.0,
step=0.1,
label="Anomaly Detection Sensitivity"
)
use_real_data = gr.Checkbox(
label="Use Real NOAA Data",
value=True,
info="Uncheck to use synthetic data"
)
analyze_btn = gr.Button("Analyze Ocean Data", variant="primary")
with gr.Column(scale=2):
gr.Markdown("### Climate Alerts")
alerts_output = gr.Markdown()
with gr.Row():
analysis_output = gr.Markdown()
with gr.Tab("Main Dashboard"):
dashboard_plot = gr.Plot()
with gr.Tab("Anomaly Detection"):
anomaly_plot = gr.Plot()
with gr.Tab("Correlations"):
correlation_plot = gr.Plot()
with gr.Tab("Data Export"):
gr.Markdown("### Download Analyzed Data")
csv_output = gr.File(label="Download CSV Data")
gr.Markdown("*Note: Real NOAA data usage is subject to their terms of service*")
# Set up the analysis function
analyze_btn.click(
fn=analyze_real_ocean_data,
inputs=[station_name, days_back, anomaly_sensitivity, use_real_data],
outputs=[dashboard_plot, anomaly_plot, correlation_plot, analysis_output, alerts_output, csv_output]
)
# Auto-run on startup with synthetic data
demo.load(
fn=analyze_real_ocean_data,
inputs=[
gr.Text(value="San Francisco, CA", visible=False),
gr.Number(value=30, visible=False),
gr.Number(value=2.0, visible=False),
gr.Checkbox(value=False, visible=False) # Start with synthetic data
],
outputs=[dashboard_plot, anomaly_plot, correlation_plot, analysis_output, alerts_output, csv_output]
)
if __name__ == "__main__":
demo.launch() |