File size: 19,499 Bytes
d4e1e5e
9755c24
 
abefdbc
d4e1e5e
 
 
 
 
9755c24
d4e1e5e
 
abefdbc
d4e1e5e
 
 
9755c24
d4e1e5e
 
9755c24
abefdbc
d4e1e5e
 
abefdbc
d4e1e5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abefdbc
d4e1e5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abefdbc
d4e1e5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abefdbc
d4e1e5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abefdbc
d4e1e5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abefdbc
d4e1e5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9755c24
d4e1e5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9755c24
d4e1e5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abefdbc
d4e1e5e
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
import gradio as gr
import numpy as np
import torch
import json
import matplotlib.pyplot as plt
import plotly.graph_objects as go
import plotly.express as px
from typing import Dict, List, Tuple, Any
import logging

# Import your quantum AI agent (assuming it's in quantum_agent.py)
from quantum_agent import QuantumAIAgent, QuantumState, QuantumCircuit

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class QuantumAIInterface:
    """Gradio interface for the Quantum AI Agent."""
    
    def __init__(self):
        self.agent = QuantumAIAgent()
        logger.info("Quantum AI Interface initialized")
    
    def optimize_vqe(self, num_qubits: int, optimization_steps: int) -> Tuple[str, str]:
        """VQE optimization interface."""
        try:
            # Create a random Hamiltonian
            dim = 2**num_qubits
            hamiltonian = np.random.random((dim, dim))
            hamiltonian = hamiltonian + hamiltonian.T  # Make Hermitian
            
            # Initialize random parameters
            initial_params = np.random.random(num_qubits * 2)
            
            # Run optimization
            result = self.agent.optimize_quantum_algorithm("VQE", hamiltonian, initial_params)
            
            # Format results
            result_text = f"""
VQE Optimization Results:
========================
Ground State Energy: {result['ground_state_energy']:.6f}
Optimization Success: {result['optimization_success']}
Number of Iterations: {result['iterations']}
Optimal Parameters: {np.array2string(result['optimal_parameters'], precision=4)}
Circuit Depth: {result['optimal_circuit'].depth}
            """
            
            # Create visualization
            fig = plt.figure(figsize=(10, 6))
            plt.subplot(1, 2, 1)
            plt.plot(result['optimal_parameters'], 'bo-')
            plt.title('Optimal Parameters')
            plt.xlabel('Parameter Index')
            plt.ylabel('Value')
            
            plt.subplot(1, 2, 2)
            plt.bar(range(len(result['optimal_parameters'])), result['optimal_parameters'])
            plt.title('Parameter Distribution')
            plt.xlabel('Parameter Index')
            plt.ylabel('Value')
            
            plt.tight_layout()
            plt.savefig('vqe_results.png', dpi=150, bbox_inches='tight')
            plt.close()
            
            return result_text, 'vqe_results.png'
            
        except Exception as e:
            error_msg = f"Error in VQE optimization: {str(e)}"
            logger.error(error_msg)
            return error_msg, None
    
    def optimize_qaoa(self, num_qubits: int, num_layers: int) -> Tuple[str, str]:
        """QAOA optimization interface."""
        try:
            # Create problem Hamiltonian
            dim = 2**num_qubits
            hamiltonian = np.random.random((dim, dim))
            hamiltonian = hamiltonian + hamiltonian.T
            
            # Initialize QAOA parameters
            initial_params = np.random.random(2 * num_layers)  # beta and gamma
            
            # Run optimization
            result = self.agent.optimize_quantum_algorithm("QAOA", hamiltonian, initial_params)
            
            result_text = f"""
QAOA Optimization Results:
=========================
Optimal Value: {result['optimal_value']:.6f}
Optimization Success: {result['optimization_success']}
Number of Iterations: {result['iterations']}
Optimal Beta: {np.array2string(result['optimal_beta'], precision=4)}
Optimal Gamma: {np.array2string(result['optimal_gamma'], precision=4)}
            """
            
            # Create visualization
            fig = plt.figure(figsize=(12, 5))
            
            plt.subplot(1, 3, 1)
            plt.plot(result['optimal_beta'], 'ro-', label='Beta')
            plt.plot(result['optimal_gamma'], 'bo-', label='Gamma')
            plt.title('QAOA Parameters')
            plt.xlabel('Layer')
            plt.ylabel('Value')
            plt.legend()
            
            plt.subplot(1, 3, 2)
            plt.bar(range(len(result['optimal_beta'])), result['optimal_beta'], alpha=0.7, label='Beta')
            plt.title('Beta Parameters')
            plt.xlabel('Layer')
            plt.ylabel('Value')
            
            plt.subplot(1, 3, 3)
            plt.bar(range(len(result['optimal_gamma'])), result['optimal_gamma'], alpha=0.7, label='Gamma', color='orange')
            plt.title('Gamma Parameters')
            plt.xlabel('Layer')
            plt.ylabel('Value')
            
            plt.tight_layout()
            plt.savefig('qaoa_results.png', dpi=150, bbox_inches='tight')
            plt.close()
            
            return result_text, 'qaoa_results.png'
            
        except Exception as e:
            error_msg = f"Error in QAOA optimization: {str(e)}"
            logger.error(error_msg)
            return error_msg, None
    
    def demonstrate_error_mitigation(self, num_qubits: int, noise_level: float) -> Tuple[str, str]:
        """Error mitigation demonstration."""
        try:
            # Create a quantum state
            dim = 2**num_qubits
            amplitudes = np.random.random(dim) + 1j * np.random.random(dim)
            amplitudes = amplitudes / np.linalg.norm(amplitudes)
            
            quantum_state = QuantumState(
                amplitudes=amplitudes,
                num_qubits=num_qubits,
                fidelity=1.0 - noise_level
            )
            
            # Apply error mitigation
            noise_model = {"noise_factor": noise_level}
            corrected_state = self.agent.mitigate_errors(quantum_state, noise_model)
            
            result_text = f"""
Error Mitigation Results:
========================
Number of Qubits: {num_qubits}
Original Fidelity: {quantum_state.fidelity:.4f}
Corrected Fidelity: {corrected_state.fidelity:.4f}
Fidelity Improvement: {corrected_state.fidelity - quantum_state.fidelity:.4f}
Noise Level: {noise_level:.4f}
            """
            
            # Create visualization
            fig = plt.figure(figsize=(12, 5))
            
            plt.subplot(1, 3, 1)
            plt.bar(['Original', 'Corrected'], [quantum_state.fidelity, corrected_state.fidelity])
            plt.title('Fidelity Comparison')
            plt.ylabel('Fidelity')
            plt.ylim(0, 1)
            
            plt.subplot(1, 3, 2)
            plt.plot(np.abs(quantum_state.amplitudes), 'b-', label='Original', alpha=0.7)
            plt.plot(np.abs(corrected_state.amplitudes), 'r-', label='Corrected', alpha=0.7)
            plt.title('State Amplitudes (Magnitude)')
            plt.xlabel('Basis State')
            plt.ylabel('Amplitude')
            plt.legend()
            
            plt.subplot(1, 3, 3)
            improvement = corrected_state.fidelity - quantum_state.fidelity
            plt.bar(['Fidelity Improvement'], [improvement], color='green' if improvement > 0 else 'red')
            plt.title('Improvement')
            plt.ylabel('Fidelity Change')
            
            plt.tight_layout()
            plt.savefig('error_mitigation_results.png', dpi=150, bbox_inches='tight')
            plt.close()
            
            return result_text, 'error_mitigation_results.png'
            
        except Exception as e:
            error_msg = f"Error in error mitigation: {str(e)}"
            logger.error(error_msg)
            return error_msg, None
    
    def optimize_resources(self, num_circuits: int, max_qubits: int, available_qubits: int) -> Tuple[str, str]:
        """Resource optimization demonstration."""
        try:
            # Generate random circuits
            circuits = []
            for i in range(num_circuits):
                num_qubits = np.random.randint(2, min(max_qubits, available_qubits) + 1)
                depth = np.random.randint(5, 50)
                circuits.append(QuantumCircuit([], np.array([]), num_qubits, depth))
            
            # Optimize resources
            allocation_plan = self.agent.optimize_resources(circuits, available_qubits)
            
            result_text = f"""
Resource Optimization Results:
=============================
Number of Circuits: {num_circuits}
Available Qubits: {available_qubits}
Resource Utilization: {allocation_plan['resource_utilization']:.2%}
Estimated Runtime: {allocation_plan['estimated_runtime']:.2f} time units
Scheduled Circuits: {len(allocation_plan['schedule'])}
            """
            
            if allocation_plan['schedule']:
                result_text += "\nSchedule Details:\n"
                for i, task in enumerate(allocation_plan['schedule'][:5]):  # Show first 5
                    result_text += f"Circuit {task['circuit_id']}: {task['qubits_allocated']} qubits, starts at {task['start_time']:.2f}\n"
            
            # Create visualization
            fig = plt.figure(figsize=(12, 8))
            
            # Resource utilization
            plt.subplot(2, 2, 1)
            plt.pie([allocation_plan['resource_utilization'], 1 - allocation_plan['resource_utilization']], 
                    labels=['Used', 'Available'], autopct='%1.1f%%')
            plt.title('Resource Utilization')
            
            # Circuit requirements
            plt.subplot(2, 2, 2)
            qubit_reqs = [c.num_qubits for c in circuits]
            plt.hist(qubit_reqs, bins=min(10, max_qubits), alpha=0.7)
            plt.title('Circuit Qubit Requirements')
            plt.xlabel('Number of Qubits')
            plt.ylabel('Frequency')
            
            # Circuit depths
            plt.subplot(2, 2, 3)
            depths = [c.depth for c in circuits]
            plt.hist(depths, bins=10, alpha=0.7, color='orange')
            plt.title('Circuit Depths')
            plt.xlabel('Depth')
            plt.ylabel('Frequency')
            
            # Schedule timeline
            plt.subplot(2, 2, 4)
            if allocation_plan['schedule']:
                start_times = [task['start_time'] for task in allocation_plan['schedule']]
                durations = [task['estimated_duration'] for task in allocation_plan['schedule']]
                plt.barh(range(len(start_times)), durations, left=start_times, alpha=0.7)
                plt.title('Schedule Timeline')
                plt.xlabel('Time')
                plt.ylabel('Circuit')
            
            plt.tight_layout()
            plt.savefig('resource_optimization_results.png', dpi=150, bbox_inches='tight')
            plt.close()
            
            return result_text, 'resource_optimization_results.png'
            
        except Exception as e:
            error_msg = f"Error in resource optimization: {str(e)}"
            logger.error(error_msg)
            return error_msg, None
    
    def hybrid_processing_demo(self, data_size: int, quantum_component: str) -> Tuple[str, str]:
        """Hybrid processing demonstration."""
        try:
            # Generate classical data
            classical_data = np.random.random(data_size)
            
            # Run hybrid processing
            result = self.agent.hybrid_processing(classical_data, quantum_component)
            
            result_text = f"""
Hybrid Processing Results:
=========================
Input Data Size: {data_size}
Quantum Component: {quantum_component}
Output Statistics:
  Mean: {result['final_result']['statistics']['mean']:.6f}
  Std: {result['final_result']['statistics']['std']:.6f}
  Min: {result['final_result']['statistics']['min']:.6f}
  Max: {result['final_result']['statistics']['max']:.6f}
Confidence: {result['final_result']['confidence']:.4f}
            """
            
            # Create visualization
            fig = plt.figure(figsize=(15, 5))
            
            plt.subplot(1, 3, 1)
            plt.plot(classical_data, 'b-', alpha=0.7)
            plt.title('Original Classical Data')
            plt.xlabel('Index')
            plt.ylabel('Value')
            
            plt.subplot(1, 3, 2)
            plt.plot(result['preprocessed_data'], 'g-', alpha=0.7)
            plt.title('Preprocessed Data')
            plt.xlabel('Index')
            plt.ylabel('Value')
            
            plt.subplot(1, 3, 3)
            plt.plot(result['quantum_result'].flatten(), 'r-', alpha=0.7)
            plt.title(f'Quantum Result ({quantum_component})')
            plt.xlabel('Index')
            plt.ylabel('Value')
            
            plt.tight_layout()
            plt.savefig('hybrid_processing_results.png', dpi=150, bbox_inches='tight')
            plt.close()
            
            return result_text, 'hybrid_processing_results.png'
            
        except Exception as e:
            error_msg = f"Error in hybrid processing: {str(e)}"
            logger.error(error_msg)
            return error_msg, None

def create_interface():
    """Create the Gradio interface."""
    interface = QuantumAIInterface()
    
    with gr.Blocks(title="Quantum AI Agent", theme=gr.themes.Soft()) as demo:
        gr.Markdown("""
        # πŸš€ Quantum AI Agent
        
        This is an AI agent designed to optimize quantum computing algorithms using classical machine learning techniques.
        
        ## Features:
        - **Algorithm Optimization**: VQE, QAOA, QNN parameter optimization
        - **Error Mitigation**: AI-powered quantum error correction
        - **Resource Management**: Intelligent qubit allocation and scheduling
        - **Hybrid Processing**: Quantum-classical algorithm integration
        """)
        
        with gr.Tabs():
            # VQE Tab
            with gr.TabItem("πŸ”¬ VQE Optimization"):
                gr.Markdown("### Variational Quantum Eigensolver")
                with gr.Row():
                    with gr.Column():
                        vqe_qubits = gr.Slider(2, 4, value=3, step=1, label="Number of Qubits")
                        vqe_steps = gr.Slider(10, 1000, value=100, step=10, label="Optimization Steps")
                        vqe_button = gr.Button("Optimize VQE", variant="primary")
                    
                    with gr.Column():
                        vqe_output = gr.Textbox(label="Results", lines=10)
                        vqe_plot = gr.Image(label="Visualization")
                
                vqe_button.click(
                    interface.optimize_vqe,
                    inputs=[vqe_qubits, vqe_steps],
                    outputs=[vqe_output, vqe_plot]
                )
            
            # QAOA Tab
            with gr.TabItem("🎯 QAOA Optimization"):
                gr.Markdown("### Quantum Approximate Optimization Algorithm")
                with gr.Row():
                    with gr.Column():
                        qaoa_qubits = gr.Slider(2, 4, value=3, step=1, label="Number of Qubits")
                        qaoa_layers = gr.Slider(1, 5, value=2, step=1, label="Number of Layers")
                        qaoa_button = gr.Button("Optimize QAOA", variant="primary")
                    
                    with gr.Column():
                        qaoa_output = gr.Textbox(label="Results", lines=10)
                        qaoa_plot = gr.Image(label="Visualization")
                
                qaoa_button.click(
                    interface.optimize_qaoa,
                    inputs=[qaoa_qubits, qaoa_layers],
                    outputs=[qaoa_output, qaoa_plot]
                )
            
            # Error Mitigation Tab
            with gr.TabItem("πŸ›‘οΈ Error Mitigation"):
                gr.Markdown("### Quantum Error Correction")
                with gr.Row():
                    with gr.Column():
                        error_qubits = gr.Slider(2, 5, value=3, step=1, label="Number of Qubits")
                        noise_level = gr.Slider(0.0, 0.5, value=0.1, step=0.01, label="Noise Level")
                        error_button = gr.Button("Apply Error Mitigation", variant="primary")
                    
                    with gr.Column():
                        error_output = gr.Textbox(label="Results", lines=10)
                        error_plot = gr.Image(label="Visualization")
                
                error_button.click(
                    interface.demonstrate_error_mitigation,
                    inputs=[error_qubits, noise_level],
                    outputs=[error_output, error_plot]
                )
            
            # Resource Management Tab
            with gr.TabItem("⚑ Resource Management"):
                gr.Markdown("### Quantum Resource Optimization")
                with gr.Row():
                    with gr.Column():
                        num_circuits = gr.Slider(3, 20, value=10, step=1, label="Number of Circuits")
                        max_qubits = gr.Slider(2, 10, value=5, step=1, label="Max Qubits per Circuit")
                        available_qubits = gr.Slider(5, 20, value=10, step=1, label="Available Qubits")
                        resource_button = gr.Button("Optimize Resources", variant="primary")
                    
                    with gr.Column():
                        resource_output = gr.Textbox(label="Results", lines=10)
                        resource_plot = gr.Image(label="Visualization")
                
                resource_button.click(
                    interface.optimize_resources,
                    inputs=[num_circuits, max_qubits, available_qubits],
                    outputs=[resource_output, resource_plot]
                )
            
            # Hybrid Processing Tab
            with gr.TabItem("πŸ”„ Hybrid Processing"):
                gr.Markdown("### Quantum-Classical Hybrid Algorithms")
                with gr.Row():
                    with gr.Column():
                        data_size = gr.Slider(10, 100, value=50, step=5, label="Data Size")
                        quantum_component = gr.Dropdown(
                            ["quantum_kernel", "quantum_feature_map", "quantum_neural_layer"],
                            value="quantum_kernel",
                            label="Quantum Component"
                        )
                        hybrid_button = gr.Button("Run Hybrid Processing", variant="primary")
                    
                    with gr.Column():
                        hybrid_output = gr.Textbox(label="Results", lines=10)
                        hybrid_plot = gr.Image(label="Visualization")
                
                hybrid_button.click(
                    interface.hybrid_processing_demo,
                    inputs=[data_size, quantum_component],
                    outputs=[hybrid_output, hybrid_plot]
                )
        
        gr.Markdown("""
        ---
        ### About
        This Quantum AI Agent demonstrates the integration of classical AI techniques with quantum computing algorithms.
        It showcases optimization strategies for VQE and QAOA, error mitigation using neural networks, 
        intelligent resource management, and hybrid quantum-classical processing.
        
        **Note**: This is a simulation for demonstration purposes. Real quantum hardware integration would require 
        additional components and API connections.
        """)
    
    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True
    )