File size: 15,047 Bytes
3fac523 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from typing import Dict, List, Tuple, Any, Optional
import logging
from dataclasses import dataclass
from scipy.optimize import minimize
import json
logger = logging.getLogger(__name__)
@dataclass
class QuantumState:
"""Represents a quantum state."""
amplitudes: np.ndarray
num_qubits: int
fidelity: float = 1.0
def __post_init__(self):
"""Normalize amplitudes after initialization."""
self.amplitudes = self.amplitudes / np.linalg.norm(self.amplitudes)
@dataclass
class QuantumCircuit:
"""Represents a quantum circuit."""
gates: List[str]
parameters: np.ndarray
num_qubits: int
depth: int
def __post_init__(self):
"""Initialize circuit properties."""
if len(self.gates) == 0:
# Generate some default gates for demonstration
gate_types = ['RX', 'RY', 'RZ', 'CNOT', 'H']
self.gates = [np.random.choice(gate_types) for _ in range(self.depth)]
class QuantumNeuralNetwork(nn.Module):
"""Neural network for quantum parameter optimization."""
def __init__(self, input_dim: int, hidden_dim: int = 64, output_dim: int = 1):
super().__init__()
self.network = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, output_dim)
)
def forward(self, x):
return self.network(x)
class ErrorMitigationNetwork(nn.Module):
"""Neural network for quantum error mitigation."""
def __init__(self, state_dim: int, hidden_dim: int = 128):
super().__init__()
self.encoder = nn.Sequential(
nn.Linear(state_dim * 2, hidden_dim), # *2 for real and imaginary parts
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU()
)
self.decoder = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, state_dim * 2),
nn.Tanh()
)
def forward(self, x):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return decoded
class QuantumAIAgent:
"""AI agent for quantum computing optimization."""
def __init__(self):
"""Initialize the quantum AI agent."""
self.optimization_history = []
self.error_mitigation_net = None
self.parameter_optimizer = None
logger.info("QuantumAIAgent initialized")
def optimize_quantum_algorithm(self, algorithm: str, hamiltonian: np.ndarray,
initial_params: np.ndarray) -> Dict[str, Any]:
"""Optimize quantum algorithm parameters."""
logger.info(f"Optimizing {algorithm} algorithm")
if algorithm == "VQE":
return self._optimize_vqe(hamiltonian, initial_params)
elif algorithm == "QAOA":
return self._optimize_qaoa(hamiltonian, initial_params)
else:
raise ValueError(f"Unknown algorithm: {algorithm}")
def _optimize_vqe(self, hamiltonian: np.ndarray, initial_params: np.ndarray) -> Dict[str, Any]:
"""Optimize VQE parameters."""
def objective(params):
# Simulate VQE energy calculation
# In practice, this would involve quantum circuit simulation
circuit_result = self._simulate_vqe_circuit(params, hamiltonian)
return circuit_result
# Use classical optimization
result = minimize(objective, initial_params, method='BFGS')
# Create optimal circuit
optimal_circuit = QuantumCircuit(
gates=[],
parameters=result.x,
num_qubits=int(np.log2(hamiltonian.shape[0])),
depth=len(result.x) // 2
)
return {
'ground_state_energy': result.fun,
'optimization_success': result.success,
'iterations': result.nit,
'optimal_parameters': result.x,
'optimal_circuit': optimal_circuit
}
def _optimize_qaoa(self, hamiltonian: np.ndarray, initial_params: np.ndarray) -> Dict[str, Any]:
"""Optimize QAOA parameters."""
num_layers = len(initial_params) // 2
def objective(params):
beta = params[:num_layers]
gamma = params[num_layers:]
return self._simulate_qaoa_circuit(beta, gamma, hamiltonian)
result = minimize(objective, initial_params, method='COBYLA')
return {
'optimal_value': -result.fun, # Minimize negative for maximization
'optimization_success': result.success,
'iterations': result.nit,
'optimal_beta': result.x[:num_layers],
'optimal_gamma': result.x[num_layers:]
}
def _simulate_vqe_circuit(self, params: np.ndarray, hamiltonian: np.ndarray) -> float:
"""Simulate VQE circuit and return energy expectation."""
# Simplified simulation - create parameterized state
num_qubits = int(np.log2(hamiltonian.shape[0]))
# Create a parameterized quantum state (simplified)
angles = params[:num_qubits]
state = np.zeros(2**num_qubits, dtype=complex)
# Simple parameterization: each qubit gets a rotation
for i in range(2**num_qubits):
amplitude = 1.0
for q in range(num_qubits):
if (i >> q) & 1:
amplitude *= np.sin(angles[q % len(angles)])
else:
amplitude *= np.cos(angles[q % len(angles)])
state[i] = amplitude
# Normalize
state = state / np.linalg.norm(state)
# Calculate expectation value
energy = np.real(np.conj(state).T @ hamiltonian @ state)
return energy
def _simulate_qaoa_circuit(self, beta: np.ndarray, gamma: np.ndarray, hamiltonian: np.ndarray) -> float:
"""Simulate QAOA circuit and return objective value."""
# Simplified QAOA simulation
num_qubits = int(np.log2(hamiltonian.shape[0]))
# Start with uniform superposition
state = np.ones(2**num_qubits, dtype=complex) / np.sqrt(2**num_qubits)
# Apply QAOA layers (simplified)
for i in range(len(beta)):
# Problem Hamiltonian evolution (simplified)
phase_factors = np.exp(-1j * gamma[i] * np.diag(hamiltonian))
state = phase_factors * state
# Mixer Hamiltonian evolution (simplified X rotations)
# This is a very simplified version
for q in range(num_qubits):
# Apply rotation (simplified)
rotation_factor = np.cos(beta[i]) + 1j * np.sin(beta[i])
state = state * rotation_factor
# Normalize
state = state / np.linalg.norm(state)
# Calculate expectation value
expectation = np.real(np.conj(state).T @ hamiltonian @ state)
return -expectation # Return negative for minimization
def mitigate_errors(self, quantum_state: QuantumState, noise_model: Dict[str, Any]) -> QuantumState:
"""Apply AI-powered error mitigation."""
logger.info("Applying error mitigation")
# Initialize error mitigation network if not exists
if self.error_mitigation_net is None:
state_dim = len(quantum_state.amplitudes)
self.error_mitigation_net = ErrorMitigationNetwork(state_dim)
# Convert quantum state to real input (real and imaginary parts)
state_real = np.real(quantum_state.amplitudes)
state_imag = np.imag(quantum_state.amplitudes)
input_data = np.concatenate([state_real, state_imag])
# Apply noise simulation
noise_factor = noise_model.get('noise_factor', 0.1)
noisy_input = input_data + np.random.normal(0, noise_factor, input_data.shape)
# Apply error mitigation (simplified - in practice would be trained)
with torch.no_grad():
input_tensor = torch.FloatTensor(noisy_input).unsqueeze(0)
corrected_output = self.error_mitigation_net(input_tensor).squeeze(0).numpy()
# Convert back to complex amplitudes
mid_point = len(corrected_output) // 2
corrected_real = corrected_output[:mid_point]
corrected_imag = corrected_output[mid_point:]
corrected_amplitudes = corrected_real + 1j * corrected_imag
# Normalize
corrected_amplitudes = corrected_amplitudes / np.linalg.norm(corrected_amplitudes)
# Calculate improved fidelity
original_fidelity = quantum_state.fidelity
fidelity_improvement = min(0.1, noise_factor * 0.5) # Simplified improvement
new_fidelity = min(1.0, original_fidelity + fidelity_improvement)
return QuantumState(
amplitudes=corrected_amplitudes,
num_qubits=quantum_state.num_qubits,
fidelity=new_fidelity
)
def optimize_resources(self, circuits: List[QuantumCircuit], available_qubits: int) -> Dict[str, Any]:
"""Optimize quantum resource allocation."""
logger.info(f"Optimizing resources for {len(circuits)} circuits with {available_qubits} qubits")
# Simple scheduling algorithm
schedule = []
current_time = 0
total_qubits_used = 0
# Sort circuits by qubit requirement (First-Fit Decreasing)
sorted_circuits = sorted(enumerate(circuits), key=lambda x: x[1].num_qubits, reverse=True)
for circuit_id, circuit in sorted_circuits:
if circuit.num_qubits <= available_qubits:
# Estimate execution time based on circuit depth
estimated_duration = circuit.depth * 0.1 # 0.1 time units per gate
schedule.append({
'circuit_id': circuit_id,
'qubits_allocated': circuit.num_qubits,
'start_time': current_time,
'estimated_duration': estimated_duration
})
current_time += estimated_duration
total_qubits_used += circuit.num_qubits
# Calculate resource utilization
max_possible_qubits = len(circuits) * available_qubits
resource_utilization = total_qubits_used / max_possible_qubits if max_possible_qubits > 0 else 0
return {
'schedule': schedule,
'resource_utilization': resource_utilization,
'estimated_runtime': current_time,
'circuits_scheduled': len(schedule)
}
def hybrid_processing(self, classical_data: np.ndarray, quantum_component: str) -> Dict[str, Any]:
"""Perform hybrid quantum-classical processing."""
logger.info(f"Running hybrid processing with {quantum_component}")
# Preprocess classical data
preprocessed_data = self._preprocess_classical_data(classical_data)
# Apply quantum component
if quantum_component == "quantum_kernel":
quantum_result = self._apply_quantum_kernel(preprocessed_data)
elif quantum_component == "quantum_feature_map":
quantum_result = self._apply_quantum_feature_map(preprocessed_data)
elif quantum_component == "quantum_neural_layer":
quantum_result = self._apply_quantum_neural_layer(preprocessed_data)
else:
raise ValueError(f"Unknown quantum component: {quantum_component}")
# Post-process results
final_result = self._postprocess_quantum_result(quantum_result)
return {
'preprocessed_data': preprocessed_data,
'quantum_result': quantum_result,
'final_result': final_result
}
def _preprocess_classical_data(self, data: np.ndarray) -> np.ndarray:
"""Preprocess classical data for quantum processing."""
# Normalize data
normalized_data = (data - np.mean(data)) / (np.std(data) + 1e-8)
# Apply some classical preprocessing
processed_data = np.tanh(normalized_data) # Squash to [-1, 1]
return processed_data
def _apply_quantum_kernel(self, data: np.ndarray) -> np.ndarray:
"""Apply quantum kernel transformation."""
# Simulate quantum kernel computation
# In practice, this would involve quantum feature maps
kernel_matrix = np.zeros((len(data), len(data)))
for i in range(len(data)):
for j in range(len(data)):
# Simplified quantum kernel (RBF-like with quantum enhancement)
diff = data[i] - data[j]
quantum_enhancement = np.cos(np.pi * diff) * np.exp(-0.5 * diff**2)
kernel_matrix[i, j] = quantum_enhancement
return kernel_matrix
def _apply_quantum_feature_map(self, data: np.ndarray) -> np.ndarray:
"""Apply quantum feature map."""
# Simulate quantum feature mapping
num_features = len(data)
quantum_features = np.zeros(num_features * 2) # Expand feature space
for i, x in enumerate(data):
# Simulate quantum feature encoding
quantum_features[2*i] = np.cos(np.pi * x)
quantum_features[2*i + 1] = np.sin(np.pi * x)
return quantum_features
def _apply_quantum_neural_layer(self, data: np.ndarray) -> np.ndarray:
"""Apply quantum neural network layer."""
# Simulate quantum neural network layer
output_size = len(data)
quantum_output = np.zeros(output_size)
# Simplified quantum neural transformation
for i, x in enumerate(data):
# Simulate parameterized quantum circuit
theta = x * np.pi / 4 # Parameter encoding
quantum_output[i] = np.cos(theta) * np.exp(-0.1 * x**2)
return quantum_output
def _postprocess_quantum_result(self, quantum_result: np.ndarray) -> Dict[str, Any]:
"""Post-process quantum results."""
# Calculate statistics
stats = {
'mean': np.mean(quantum_result),
'std': np.std(quantum_result),
'min': np.min(quantum_result),
'max': np.max(quantum_result)
}
# Calculate confidence (simplified)
confidence = 1.0 - np.std(quantum_result) / (np.abs(np.mean(quantum_result)) + 1e-8)
confidence = max(0, min(1, confidence))
return {
'statistics': stats,
'confidence': confidence,
'processed_data': quantum_result
} |