File size: 15,047 Bytes
3fac523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from typing import Dict, List, Tuple, Any, Optional
import logging
from dataclasses import dataclass
from scipy.optimize import minimize
import json

logger = logging.getLogger(__name__)

@dataclass
class QuantumState:
    """Represents a quantum state."""
    amplitudes: np.ndarray
    num_qubits: int
    fidelity: float = 1.0
    
    def __post_init__(self):
        """Normalize amplitudes after initialization."""
        self.amplitudes = self.amplitudes / np.linalg.norm(self.amplitudes)

@dataclass
class QuantumCircuit:
    """Represents a quantum circuit."""
    gates: List[str]
    parameters: np.ndarray
    num_qubits: int
    depth: int
    
    def __post_init__(self):
        """Initialize circuit properties."""
        if len(self.gates) == 0:
            # Generate some default gates for demonstration
            gate_types = ['RX', 'RY', 'RZ', 'CNOT', 'H']
            self.gates = [np.random.choice(gate_types) for _ in range(self.depth)]

class QuantumNeuralNetwork(nn.Module):
    """Neural network for quantum parameter optimization."""
    
    def __init__(self, input_dim: int, hidden_dim: int = 64, output_dim: int = 1):
        super().__init__()
        self.network = nn.Sequential(
            nn.Linear(input_dim, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, output_dim)
        )
    
    def forward(self, x):
        return self.network(x)

class ErrorMitigationNetwork(nn.Module):
    """Neural network for quantum error mitigation."""
    
    def __init__(self, state_dim: int, hidden_dim: int = 128):
        super().__init__()
        self.encoder = nn.Sequential(
            nn.Linear(state_dim * 2, hidden_dim),  # *2 for real and imaginary parts
            nn.ReLU(),
            nn.Linear(hidden_dim, hidden_dim),
            nn.ReLU()
        )
        
        self.decoder = nn.Sequential(
            nn.Linear(hidden_dim, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, state_dim * 2),
            nn.Tanh()
        )
    
    def forward(self, x):
        encoded = self.encoder(x)
        decoded = self.decoder(encoded)
        return decoded

class QuantumAIAgent:
    """AI agent for quantum computing optimization."""
    
    def __init__(self):
        """Initialize the quantum AI agent."""
        self.optimization_history = []
        self.error_mitigation_net = None
        self.parameter_optimizer = None
        logger.info("QuantumAIAgent initialized")
    
    def optimize_quantum_algorithm(self, algorithm: str, hamiltonian: np.ndarray, 
                                 initial_params: np.ndarray) -> Dict[str, Any]:
        """Optimize quantum algorithm parameters."""
        logger.info(f"Optimizing {algorithm} algorithm")
        
        if algorithm == "VQE":
            return self._optimize_vqe(hamiltonian, initial_params)
        elif algorithm == "QAOA":
            return self._optimize_qaoa(hamiltonian, initial_params)
        else:
            raise ValueError(f"Unknown algorithm: {algorithm}")
    
    def _optimize_vqe(self, hamiltonian: np.ndarray, initial_params: np.ndarray) -> Dict[str, Any]:
        """Optimize VQE parameters."""
        def objective(params):
            # Simulate VQE energy calculation
            # In practice, this would involve quantum circuit simulation
            circuit_result = self._simulate_vqe_circuit(params, hamiltonian)
            return circuit_result
        
        # Use classical optimization
        result = minimize(objective, initial_params, method='BFGS')
        
        # Create optimal circuit
        optimal_circuit = QuantumCircuit(
            gates=[],
            parameters=result.x,
            num_qubits=int(np.log2(hamiltonian.shape[0])),
            depth=len(result.x) // 2
        )
        
        return {
            'ground_state_energy': result.fun,
            'optimization_success': result.success,
            'iterations': result.nit,
            'optimal_parameters': result.x,
            'optimal_circuit': optimal_circuit
        }
    
    def _optimize_qaoa(self, hamiltonian: np.ndarray, initial_params: np.ndarray) -> Dict[str, Any]:
        """Optimize QAOA parameters."""
        num_layers = len(initial_params) // 2
        
        def objective(params):
            beta = params[:num_layers]
            gamma = params[num_layers:]
            return self._simulate_qaoa_circuit(beta, gamma, hamiltonian)
        
        result = minimize(objective, initial_params, method='COBYLA')
        
        return {
            'optimal_value': -result.fun,  # Minimize negative for maximization
            'optimization_success': result.success,
            'iterations': result.nit,
            'optimal_beta': result.x[:num_layers],
            'optimal_gamma': result.x[num_layers:]
        }
    
    def _simulate_vqe_circuit(self, params: np.ndarray, hamiltonian: np.ndarray) -> float:
        """Simulate VQE circuit and return energy expectation."""
        # Simplified simulation - create parameterized state
        num_qubits = int(np.log2(hamiltonian.shape[0]))
        
        # Create a parameterized quantum state (simplified)
        angles = params[:num_qubits]
        state = np.zeros(2**num_qubits, dtype=complex)
        
        # Simple parameterization: each qubit gets a rotation
        for i in range(2**num_qubits):
            amplitude = 1.0
            for q in range(num_qubits):
                if (i >> q) & 1:
                    amplitude *= np.sin(angles[q % len(angles)])
                else:
                    amplitude *= np.cos(angles[q % len(angles)])
            state[i] = amplitude
        
        # Normalize
        state = state / np.linalg.norm(state)
        
        # Calculate expectation value
        energy = np.real(np.conj(state).T @ hamiltonian @ state)
        return energy
    
    def _simulate_qaoa_circuit(self, beta: np.ndarray, gamma: np.ndarray, hamiltonian: np.ndarray) -> float:
        """Simulate QAOA circuit and return objective value."""
        # Simplified QAOA simulation
        num_qubits = int(np.log2(hamiltonian.shape[0]))
        
        # Start with uniform superposition
        state = np.ones(2**num_qubits, dtype=complex) / np.sqrt(2**num_qubits)
        
        # Apply QAOA layers (simplified)
        for i in range(len(beta)):
            # Problem Hamiltonian evolution (simplified)
            phase_factors = np.exp(-1j * gamma[i] * np.diag(hamiltonian))
            state = phase_factors * state
            
            # Mixer Hamiltonian evolution (simplified X rotations)
            # This is a very simplified version
            for q in range(num_qubits):
                # Apply rotation (simplified)
                rotation_factor = np.cos(beta[i]) + 1j * np.sin(beta[i])
                state = state * rotation_factor
        
        # Normalize
        state = state / np.linalg.norm(state)
        
        # Calculate expectation value
        expectation = np.real(np.conj(state).T @ hamiltonian @ state)
        return -expectation  # Return negative for minimization
    
    def mitigate_errors(self, quantum_state: QuantumState, noise_model: Dict[str, Any]) -> QuantumState:
        """Apply AI-powered error mitigation."""
        logger.info("Applying error mitigation")
        
        # Initialize error mitigation network if not exists
        if self.error_mitigation_net is None:
            state_dim = len(quantum_state.amplitudes)
            self.error_mitigation_net = ErrorMitigationNetwork(state_dim)
        
        # Convert quantum state to real input (real and imaginary parts)
        state_real = np.real(quantum_state.amplitudes)
        state_imag = np.imag(quantum_state.amplitudes)
        input_data = np.concatenate([state_real, state_imag])
        
        # Apply noise simulation
        noise_factor = noise_model.get('noise_factor', 0.1)
        noisy_input = input_data + np.random.normal(0, noise_factor, input_data.shape)
        
        # Apply error mitigation (simplified - in practice would be trained)
        with torch.no_grad():
            input_tensor = torch.FloatTensor(noisy_input).unsqueeze(0)
            corrected_output = self.error_mitigation_net(input_tensor).squeeze(0).numpy()
        
        # Convert back to complex amplitudes
        mid_point = len(corrected_output) // 2
        corrected_real = corrected_output[:mid_point]
        corrected_imag = corrected_output[mid_point:]
        corrected_amplitudes = corrected_real + 1j * corrected_imag
        
        # Normalize
        corrected_amplitudes = corrected_amplitudes / np.linalg.norm(corrected_amplitudes)
        
        # Calculate improved fidelity
        original_fidelity = quantum_state.fidelity
        fidelity_improvement = min(0.1, noise_factor * 0.5)  # Simplified improvement
        new_fidelity = min(1.0, original_fidelity + fidelity_improvement)
        
        return QuantumState(
            amplitudes=corrected_amplitudes,
            num_qubits=quantum_state.num_qubits,
            fidelity=new_fidelity
        )
    
    def optimize_resources(self, circuits: List[QuantumCircuit], available_qubits: int) -> Dict[str, Any]:
        """Optimize quantum resource allocation."""
        logger.info(f"Optimizing resources for {len(circuits)} circuits with {available_qubits} qubits")
        
        # Simple scheduling algorithm
        schedule = []
        current_time = 0
        total_qubits_used = 0
        
        # Sort circuits by qubit requirement (First-Fit Decreasing)
        sorted_circuits = sorted(enumerate(circuits), key=lambda x: x[1].num_qubits, reverse=True)
        
        for circuit_id, circuit in sorted_circuits:
            if circuit.num_qubits <= available_qubits:
                # Estimate execution time based on circuit depth
                estimated_duration = circuit.depth * 0.1  # 0.1 time units per gate
                
                schedule.append({
                    'circuit_id': circuit_id,
                    'qubits_allocated': circuit.num_qubits,
                    'start_time': current_time,
                    'estimated_duration': estimated_duration
                })
                
                current_time += estimated_duration
                total_qubits_used += circuit.num_qubits
        
        # Calculate resource utilization
        max_possible_qubits = len(circuits) * available_qubits
        resource_utilization = total_qubits_used / max_possible_qubits if max_possible_qubits > 0 else 0
        
        return {
            'schedule': schedule,
            'resource_utilization': resource_utilization,
            'estimated_runtime': current_time,
            'circuits_scheduled': len(schedule)
        }
    
    def hybrid_processing(self, classical_data: np.ndarray, quantum_component: str) -> Dict[str, Any]:
        """Perform hybrid quantum-classical processing."""
        logger.info(f"Running hybrid processing with {quantum_component}")
        
        # Preprocess classical data
        preprocessed_data = self._preprocess_classical_data(classical_data)
        
        # Apply quantum component
        if quantum_component == "quantum_kernel":
            quantum_result = self._apply_quantum_kernel(preprocessed_data)
        elif quantum_component == "quantum_feature_map":
            quantum_result = self._apply_quantum_feature_map(preprocessed_data)
        elif quantum_component == "quantum_neural_layer":
            quantum_result = self._apply_quantum_neural_layer(preprocessed_data)
        else:
            raise ValueError(f"Unknown quantum component: {quantum_component}")
        
        # Post-process results
        final_result = self._postprocess_quantum_result(quantum_result)
        
        return {
            'preprocessed_data': preprocessed_data,
            'quantum_result': quantum_result,
            'final_result': final_result
        }
    
    def _preprocess_classical_data(self, data: np.ndarray) -> np.ndarray:
        """Preprocess classical data for quantum processing."""
        # Normalize data
        normalized_data = (data - np.mean(data)) / (np.std(data) + 1e-8)
        
        # Apply some classical preprocessing
        processed_data = np.tanh(normalized_data)  # Squash to [-1, 1]
        
        return processed_data
    
    def _apply_quantum_kernel(self, data: np.ndarray) -> np.ndarray:
        """Apply quantum kernel transformation."""
        # Simulate quantum kernel computation
        # In practice, this would involve quantum feature maps
        kernel_matrix = np.zeros((len(data), len(data)))
        
        for i in range(len(data)):
            for j in range(len(data)):
                # Simplified quantum kernel (RBF-like with quantum enhancement)
                diff = data[i] - data[j]
                quantum_enhancement = np.cos(np.pi * diff) * np.exp(-0.5 * diff**2)
                kernel_matrix[i, j] = quantum_enhancement
        
        return kernel_matrix
    
    def _apply_quantum_feature_map(self, data: np.ndarray) -> np.ndarray:
        """Apply quantum feature map."""
        # Simulate quantum feature mapping
        num_features = len(data)
        quantum_features = np.zeros(num_features * 2)  # Expand feature space
        
        for i, x in enumerate(data):
            # Simulate quantum feature encoding
            quantum_features[2*i] = np.cos(np.pi * x)
            quantum_features[2*i + 1] = np.sin(np.pi * x)
        
        return quantum_features
    
    def _apply_quantum_neural_layer(self, data: np.ndarray) -> np.ndarray:
        """Apply quantum neural network layer."""
        # Simulate quantum neural network layer
        output_size = len(data)
        quantum_output = np.zeros(output_size)
        
        # Simplified quantum neural transformation
        for i, x in enumerate(data):
            # Simulate parameterized quantum circuit
            theta = x * np.pi / 4  # Parameter encoding
            quantum_output[i] = np.cos(theta) * np.exp(-0.1 * x**2)
        
        return quantum_output
    
    def _postprocess_quantum_result(self, quantum_result: np.ndarray) -> Dict[str, Any]:
        """Post-process quantum results."""
        # Calculate statistics
        stats = {
            'mean': np.mean(quantum_result),
            'std': np.std(quantum_result),
            'min': np.min(quantum_result),
            'max': np.max(quantum_result)
        }
        
        # Calculate confidence (simplified)
        confidence = 1.0 - np.std(quantum_result) / (np.abs(np.mean(quantum_result)) + 1e-8)
        confidence = max(0, min(1, confidence))
        
        return {
            'statistics': stats,
            'confidence': confidence,
            'processed_data': quantum_result
        }