Create quantum_agent.py
Browse files- quantum_agent.py +378 -0
quantum_agent.py
ADDED
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.optim as optim
|
5 |
+
from typing import Dict, List, Tuple, Any, Optional
|
6 |
+
import logging
|
7 |
+
from dataclasses import dataclass
|
8 |
+
from scipy.optimize import minimize
|
9 |
+
import json
|
10 |
+
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
|
13 |
+
@dataclass
|
14 |
+
class QuantumState:
|
15 |
+
"""Represents a quantum state."""
|
16 |
+
amplitudes: np.ndarray
|
17 |
+
num_qubits: int
|
18 |
+
fidelity: float = 1.0
|
19 |
+
|
20 |
+
def __post_init__(self):
|
21 |
+
"""Normalize amplitudes after initialization."""
|
22 |
+
self.amplitudes = self.amplitudes / np.linalg.norm(self.amplitudes)
|
23 |
+
|
24 |
+
@dataclass
|
25 |
+
class QuantumCircuit:
|
26 |
+
"""Represents a quantum circuit."""
|
27 |
+
gates: List[str]
|
28 |
+
parameters: np.ndarray
|
29 |
+
num_qubits: int
|
30 |
+
depth: int
|
31 |
+
|
32 |
+
def __post_init__(self):
|
33 |
+
"""Initialize circuit properties."""
|
34 |
+
if len(self.gates) == 0:
|
35 |
+
# Generate some default gates for demonstration
|
36 |
+
gate_types = ['RX', 'RY', 'RZ', 'CNOT', 'H']
|
37 |
+
self.gates = [np.random.choice(gate_types) for _ in range(self.depth)]
|
38 |
+
|
39 |
+
class QuantumNeuralNetwork(nn.Module):
|
40 |
+
"""Neural network for quantum parameter optimization."""
|
41 |
+
|
42 |
+
def __init__(self, input_dim: int, hidden_dim: int = 64, output_dim: int = 1):
|
43 |
+
super().__init__()
|
44 |
+
self.network = nn.Sequential(
|
45 |
+
nn.Linear(input_dim, hidden_dim),
|
46 |
+
nn.ReLU(),
|
47 |
+
nn.Linear(hidden_dim, hidden_dim),
|
48 |
+
nn.ReLU(),
|
49 |
+
nn.Linear(hidden_dim, output_dim)
|
50 |
+
)
|
51 |
+
|
52 |
+
def forward(self, x):
|
53 |
+
return self.network(x)
|
54 |
+
|
55 |
+
class ErrorMitigationNetwork(nn.Module):
|
56 |
+
"""Neural network for quantum error mitigation."""
|
57 |
+
|
58 |
+
def __init__(self, state_dim: int, hidden_dim: int = 128):
|
59 |
+
super().__init__()
|
60 |
+
self.encoder = nn.Sequential(
|
61 |
+
nn.Linear(state_dim * 2, hidden_dim), # *2 for real and imaginary parts
|
62 |
+
nn.ReLU(),
|
63 |
+
nn.Linear(hidden_dim, hidden_dim),
|
64 |
+
nn.ReLU()
|
65 |
+
)
|
66 |
+
|
67 |
+
self.decoder = nn.Sequential(
|
68 |
+
nn.Linear(hidden_dim, hidden_dim),
|
69 |
+
nn.ReLU(),
|
70 |
+
nn.Linear(hidden_dim, state_dim * 2),
|
71 |
+
nn.Tanh()
|
72 |
+
)
|
73 |
+
|
74 |
+
def forward(self, x):
|
75 |
+
encoded = self.encoder(x)
|
76 |
+
decoded = self.decoder(encoded)
|
77 |
+
return decoded
|
78 |
+
|
79 |
+
class QuantumAIAgent:
|
80 |
+
"""AI agent for quantum computing optimization."""
|
81 |
+
|
82 |
+
def __init__(self):
|
83 |
+
"""Initialize the quantum AI agent."""
|
84 |
+
self.optimization_history = []
|
85 |
+
self.error_mitigation_net = None
|
86 |
+
self.parameter_optimizer = None
|
87 |
+
logger.info("QuantumAIAgent initialized")
|
88 |
+
|
89 |
+
def optimize_quantum_algorithm(self, algorithm: str, hamiltonian: np.ndarray,
|
90 |
+
initial_params: np.ndarray) -> Dict[str, Any]:
|
91 |
+
"""Optimize quantum algorithm parameters."""
|
92 |
+
logger.info(f"Optimizing {algorithm} algorithm")
|
93 |
+
|
94 |
+
if algorithm == "VQE":
|
95 |
+
return self._optimize_vqe(hamiltonian, initial_params)
|
96 |
+
elif algorithm == "QAOA":
|
97 |
+
return self._optimize_qaoa(hamiltonian, initial_params)
|
98 |
+
else:
|
99 |
+
raise ValueError(f"Unknown algorithm: {algorithm}")
|
100 |
+
|
101 |
+
def _optimize_vqe(self, hamiltonian: np.ndarray, initial_params: np.ndarray) -> Dict[str, Any]:
|
102 |
+
"""Optimize VQE parameters."""
|
103 |
+
def objective(params):
|
104 |
+
# Simulate VQE energy calculation
|
105 |
+
# In practice, this would involve quantum circuit simulation
|
106 |
+
circuit_result = self._simulate_vqe_circuit(params, hamiltonian)
|
107 |
+
return circuit_result
|
108 |
+
|
109 |
+
# Use classical optimization
|
110 |
+
result = minimize(objective, initial_params, method='BFGS')
|
111 |
+
|
112 |
+
# Create optimal circuit
|
113 |
+
optimal_circuit = QuantumCircuit(
|
114 |
+
gates=[],
|
115 |
+
parameters=result.x,
|
116 |
+
num_qubits=int(np.log2(hamiltonian.shape[0])),
|
117 |
+
depth=len(result.x) // 2
|
118 |
+
)
|
119 |
+
|
120 |
+
return {
|
121 |
+
'ground_state_energy': result.fun,
|
122 |
+
'optimization_success': result.success,
|
123 |
+
'iterations': result.nit,
|
124 |
+
'optimal_parameters': result.x,
|
125 |
+
'optimal_circuit': optimal_circuit
|
126 |
+
}
|
127 |
+
|
128 |
+
def _optimize_qaoa(self, hamiltonian: np.ndarray, initial_params: np.ndarray) -> Dict[str, Any]:
|
129 |
+
"""Optimize QAOA parameters."""
|
130 |
+
num_layers = len(initial_params) // 2
|
131 |
+
|
132 |
+
def objective(params):
|
133 |
+
beta = params[:num_layers]
|
134 |
+
gamma = params[num_layers:]
|
135 |
+
return self._simulate_qaoa_circuit(beta, gamma, hamiltonian)
|
136 |
+
|
137 |
+
result = minimize(objective, initial_params, method='COBYLA')
|
138 |
+
|
139 |
+
return {
|
140 |
+
'optimal_value': -result.fun, # Minimize negative for maximization
|
141 |
+
'optimization_success': result.success,
|
142 |
+
'iterations': result.nit,
|
143 |
+
'optimal_beta': result.x[:num_layers],
|
144 |
+
'optimal_gamma': result.x[num_layers:]
|
145 |
+
}
|
146 |
+
|
147 |
+
def _simulate_vqe_circuit(self, params: np.ndarray, hamiltonian: np.ndarray) -> float:
|
148 |
+
"""Simulate VQE circuit and return energy expectation."""
|
149 |
+
# Simplified simulation - create parameterized state
|
150 |
+
num_qubits = int(np.log2(hamiltonian.shape[0]))
|
151 |
+
|
152 |
+
# Create a parameterized quantum state (simplified)
|
153 |
+
angles = params[:num_qubits]
|
154 |
+
state = np.zeros(2**num_qubits, dtype=complex)
|
155 |
+
|
156 |
+
# Simple parameterization: each qubit gets a rotation
|
157 |
+
for i in range(2**num_qubits):
|
158 |
+
amplitude = 1.0
|
159 |
+
for q in range(num_qubits):
|
160 |
+
if (i >> q) & 1:
|
161 |
+
amplitude *= np.sin(angles[q % len(angles)])
|
162 |
+
else:
|
163 |
+
amplitude *= np.cos(angles[q % len(angles)])
|
164 |
+
state[i] = amplitude
|
165 |
+
|
166 |
+
# Normalize
|
167 |
+
state = state / np.linalg.norm(state)
|
168 |
+
|
169 |
+
# Calculate expectation value
|
170 |
+
energy = np.real(np.conj(state).T @ hamiltonian @ state)
|
171 |
+
return energy
|
172 |
+
|
173 |
+
def _simulate_qaoa_circuit(self, beta: np.ndarray, gamma: np.ndarray, hamiltonian: np.ndarray) -> float:
|
174 |
+
"""Simulate QAOA circuit and return objective value."""
|
175 |
+
# Simplified QAOA simulation
|
176 |
+
num_qubits = int(np.log2(hamiltonian.shape[0]))
|
177 |
+
|
178 |
+
# Start with uniform superposition
|
179 |
+
state = np.ones(2**num_qubits, dtype=complex) / np.sqrt(2**num_qubits)
|
180 |
+
|
181 |
+
# Apply QAOA layers (simplified)
|
182 |
+
for i in range(len(beta)):
|
183 |
+
# Problem Hamiltonian evolution (simplified)
|
184 |
+
phase_factors = np.exp(-1j * gamma[i] * np.diag(hamiltonian))
|
185 |
+
state = phase_factors * state
|
186 |
+
|
187 |
+
# Mixer Hamiltonian evolution (simplified X rotations)
|
188 |
+
# This is a very simplified version
|
189 |
+
for q in range(num_qubits):
|
190 |
+
# Apply rotation (simplified)
|
191 |
+
rotation_factor = np.cos(beta[i]) + 1j * np.sin(beta[i])
|
192 |
+
state = state * rotation_factor
|
193 |
+
|
194 |
+
# Normalize
|
195 |
+
state = state / np.linalg.norm(state)
|
196 |
+
|
197 |
+
# Calculate expectation value
|
198 |
+
expectation = np.real(np.conj(state).T @ hamiltonian @ state)
|
199 |
+
return -expectation # Return negative for minimization
|
200 |
+
|
201 |
+
def mitigate_errors(self, quantum_state: QuantumState, noise_model: Dict[str, Any]) -> QuantumState:
|
202 |
+
"""Apply AI-powered error mitigation."""
|
203 |
+
logger.info("Applying error mitigation")
|
204 |
+
|
205 |
+
# Initialize error mitigation network if not exists
|
206 |
+
if self.error_mitigation_net is None:
|
207 |
+
state_dim = len(quantum_state.amplitudes)
|
208 |
+
self.error_mitigation_net = ErrorMitigationNetwork(state_dim)
|
209 |
+
|
210 |
+
# Convert quantum state to real input (real and imaginary parts)
|
211 |
+
state_real = np.real(quantum_state.amplitudes)
|
212 |
+
state_imag = np.imag(quantum_state.amplitudes)
|
213 |
+
input_data = np.concatenate([state_real, state_imag])
|
214 |
+
|
215 |
+
# Apply noise simulation
|
216 |
+
noise_factor = noise_model.get('noise_factor', 0.1)
|
217 |
+
noisy_input = input_data + np.random.normal(0, noise_factor, input_data.shape)
|
218 |
+
|
219 |
+
# Apply error mitigation (simplified - in practice would be trained)
|
220 |
+
with torch.no_grad():
|
221 |
+
input_tensor = torch.FloatTensor(noisy_input).unsqueeze(0)
|
222 |
+
corrected_output = self.error_mitigation_net(input_tensor).squeeze(0).numpy()
|
223 |
+
|
224 |
+
# Convert back to complex amplitudes
|
225 |
+
mid_point = len(corrected_output) // 2
|
226 |
+
corrected_real = corrected_output[:mid_point]
|
227 |
+
corrected_imag = corrected_output[mid_point:]
|
228 |
+
corrected_amplitudes = corrected_real + 1j * corrected_imag
|
229 |
+
|
230 |
+
# Normalize
|
231 |
+
corrected_amplitudes = corrected_amplitudes / np.linalg.norm(corrected_amplitudes)
|
232 |
+
|
233 |
+
# Calculate improved fidelity
|
234 |
+
original_fidelity = quantum_state.fidelity
|
235 |
+
fidelity_improvement = min(0.1, noise_factor * 0.5) # Simplified improvement
|
236 |
+
new_fidelity = min(1.0, original_fidelity + fidelity_improvement)
|
237 |
+
|
238 |
+
return QuantumState(
|
239 |
+
amplitudes=corrected_amplitudes,
|
240 |
+
num_qubits=quantum_state.num_qubits,
|
241 |
+
fidelity=new_fidelity
|
242 |
+
)
|
243 |
+
|
244 |
+
def optimize_resources(self, circuits: List[QuantumCircuit], available_qubits: int) -> Dict[str, Any]:
|
245 |
+
"""Optimize quantum resource allocation."""
|
246 |
+
logger.info(f"Optimizing resources for {len(circuits)} circuits with {available_qubits} qubits")
|
247 |
+
|
248 |
+
# Simple scheduling algorithm
|
249 |
+
schedule = []
|
250 |
+
current_time = 0
|
251 |
+
total_qubits_used = 0
|
252 |
+
|
253 |
+
# Sort circuits by qubit requirement (First-Fit Decreasing)
|
254 |
+
sorted_circuits = sorted(enumerate(circuits), key=lambda x: x[1].num_qubits, reverse=True)
|
255 |
+
|
256 |
+
for circuit_id, circuit in sorted_circuits:
|
257 |
+
if circuit.num_qubits <= available_qubits:
|
258 |
+
# Estimate execution time based on circuit depth
|
259 |
+
estimated_duration = circuit.depth * 0.1 # 0.1 time units per gate
|
260 |
+
|
261 |
+
schedule.append({
|
262 |
+
'circuit_id': circuit_id,
|
263 |
+
'qubits_allocated': circuit.num_qubits,
|
264 |
+
'start_time': current_time,
|
265 |
+
'estimated_duration': estimated_duration
|
266 |
+
})
|
267 |
+
|
268 |
+
current_time += estimated_duration
|
269 |
+
total_qubits_used += circuit.num_qubits
|
270 |
+
|
271 |
+
# Calculate resource utilization
|
272 |
+
max_possible_qubits = len(circuits) * available_qubits
|
273 |
+
resource_utilization = total_qubits_used / max_possible_qubits if max_possible_qubits > 0 else 0
|
274 |
+
|
275 |
+
return {
|
276 |
+
'schedule': schedule,
|
277 |
+
'resource_utilization': resource_utilization,
|
278 |
+
'estimated_runtime': current_time,
|
279 |
+
'circuits_scheduled': len(schedule)
|
280 |
+
}
|
281 |
+
|
282 |
+
def hybrid_processing(self, classical_data: np.ndarray, quantum_component: str) -> Dict[str, Any]:
|
283 |
+
"""Perform hybrid quantum-classical processing."""
|
284 |
+
logger.info(f"Running hybrid processing with {quantum_component}")
|
285 |
+
|
286 |
+
# Preprocess classical data
|
287 |
+
preprocessed_data = self._preprocess_classical_data(classical_data)
|
288 |
+
|
289 |
+
# Apply quantum component
|
290 |
+
if quantum_component == "quantum_kernel":
|
291 |
+
quantum_result = self._apply_quantum_kernel(preprocessed_data)
|
292 |
+
elif quantum_component == "quantum_feature_map":
|
293 |
+
quantum_result = self._apply_quantum_feature_map(preprocessed_data)
|
294 |
+
elif quantum_component == "quantum_neural_layer":
|
295 |
+
quantum_result = self._apply_quantum_neural_layer(preprocessed_data)
|
296 |
+
else:
|
297 |
+
raise ValueError(f"Unknown quantum component: {quantum_component}")
|
298 |
+
|
299 |
+
# Post-process results
|
300 |
+
final_result = self._postprocess_quantum_result(quantum_result)
|
301 |
+
|
302 |
+
return {
|
303 |
+
'preprocessed_data': preprocessed_data,
|
304 |
+
'quantum_result': quantum_result,
|
305 |
+
'final_result': final_result
|
306 |
+
}
|
307 |
+
|
308 |
+
def _preprocess_classical_data(self, data: np.ndarray) -> np.ndarray:
|
309 |
+
"""Preprocess classical data for quantum processing."""
|
310 |
+
# Normalize data
|
311 |
+
normalized_data = (data - np.mean(data)) / (np.std(data) + 1e-8)
|
312 |
+
|
313 |
+
# Apply some classical preprocessing
|
314 |
+
processed_data = np.tanh(normalized_data) # Squash to [-1, 1]
|
315 |
+
|
316 |
+
return processed_data
|
317 |
+
|
318 |
+
def _apply_quantum_kernel(self, data: np.ndarray) -> np.ndarray:
|
319 |
+
"""Apply quantum kernel transformation."""
|
320 |
+
# Simulate quantum kernel computation
|
321 |
+
# In practice, this would involve quantum feature maps
|
322 |
+
kernel_matrix = np.zeros((len(data), len(data)))
|
323 |
+
|
324 |
+
for i in range(len(data)):
|
325 |
+
for j in range(len(data)):
|
326 |
+
# Simplified quantum kernel (RBF-like with quantum enhancement)
|
327 |
+
diff = data[i] - data[j]
|
328 |
+
quantum_enhancement = np.cos(np.pi * diff) * np.exp(-0.5 * diff**2)
|
329 |
+
kernel_matrix[i, j] = quantum_enhancement
|
330 |
+
|
331 |
+
return kernel_matrix
|
332 |
+
|
333 |
+
def _apply_quantum_feature_map(self, data: np.ndarray) -> np.ndarray:
|
334 |
+
"""Apply quantum feature map."""
|
335 |
+
# Simulate quantum feature mapping
|
336 |
+
num_features = len(data)
|
337 |
+
quantum_features = np.zeros(num_features * 2) # Expand feature space
|
338 |
+
|
339 |
+
for i, x in enumerate(data):
|
340 |
+
# Simulate quantum feature encoding
|
341 |
+
quantum_features[2*i] = np.cos(np.pi * x)
|
342 |
+
quantum_features[2*i + 1] = np.sin(np.pi * x)
|
343 |
+
|
344 |
+
return quantum_features
|
345 |
+
|
346 |
+
def _apply_quantum_neural_layer(self, data: np.ndarray) -> np.ndarray:
|
347 |
+
"""Apply quantum neural network layer."""
|
348 |
+
# Simulate quantum neural network layer
|
349 |
+
output_size = len(data)
|
350 |
+
quantum_output = np.zeros(output_size)
|
351 |
+
|
352 |
+
# Simplified quantum neural transformation
|
353 |
+
for i, x in enumerate(data):
|
354 |
+
# Simulate parameterized quantum circuit
|
355 |
+
theta = x * np.pi / 4 # Parameter encoding
|
356 |
+
quantum_output[i] = np.cos(theta) * np.exp(-0.1 * x**2)
|
357 |
+
|
358 |
+
return quantum_output
|
359 |
+
|
360 |
+
def _postprocess_quantum_result(self, quantum_result: np.ndarray) -> Dict[str, Any]:
|
361 |
+
"""Post-process quantum results."""
|
362 |
+
# Calculate statistics
|
363 |
+
stats = {
|
364 |
+
'mean': np.mean(quantum_result),
|
365 |
+
'std': np.std(quantum_result),
|
366 |
+
'min': np.min(quantum_result),
|
367 |
+
'max': np.max(quantum_result)
|
368 |
+
}
|
369 |
+
|
370 |
+
# Calculate confidence (simplified)
|
371 |
+
confidence = 1.0 - np.std(quantum_result) / (np.abs(np.mean(quantum_result)) + 1e-8)
|
372 |
+
confidence = max(0, min(1, confidence))
|
373 |
+
|
374 |
+
return {
|
375 |
+
'statistics': stats,
|
376 |
+
'confidence': confidence,
|
377 |
+
'processed_data': quantum_result
|
378 |
+
}
|