CCockrum commited on
Commit
3fac523
·
verified ·
1 Parent(s): d4e1e5e

Create quantum_agent.py

Browse files
Files changed (1) hide show
  1. quantum_agent.py +378 -0
quantum_agent.py ADDED
@@ -0,0 +1,378 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.optim as optim
5
+ from typing import Dict, List, Tuple, Any, Optional
6
+ import logging
7
+ from dataclasses import dataclass
8
+ from scipy.optimize import minimize
9
+ import json
10
+
11
+ logger = logging.getLogger(__name__)
12
+
13
+ @dataclass
14
+ class QuantumState:
15
+ """Represents a quantum state."""
16
+ amplitudes: np.ndarray
17
+ num_qubits: int
18
+ fidelity: float = 1.0
19
+
20
+ def __post_init__(self):
21
+ """Normalize amplitudes after initialization."""
22
+ self.amplitudes = self.amplitudes / np.linalg.norm(self.amplitudes)
23
+
24
+ @dataclass
25
+ class QuantumCircuit:
26
+ """Represents a quantum circuit."""
27
+ gates: List[str]
28
+ parameters: np.ndarray
29
+ num_qubits: int
30
+ depth: int
31
+
32
+ def __post_init__(self):
33
+ """Initialize circuit properties."""
34
+ if len(self.gates) == 0:
35
+ # Generate some default gates for demonstration
36
+ gate_types = ['RX', 'RY', 'RZ', 'CNOT', 'H']
37
+ self.gates = [np.random.choice(gate_types) for _ in range(self.depth)]
38
+
39
+ class QuantumNeuralNetwork(nn.Module):
40
+ """Neural network for quantum parameter optimization."""
41
+
42
+ def __init__(self, input_dim: int, hidden_dim: int = 64, output_dim: int = 1):
43
+ super().__init__()
44
+ self.network = nn.Sequential(
45
+ nn.Linear(input_dim, hidden_dim),
46
+ nn.ReLU(),
47
+ nn.Linear(hidden_dim, hidden_dim),
48
+ nn.ReLU(),
49
+ nn.Linear(hidden_dim, output_dim)
50
+ )
51
+
52
+ def forward(self, x):
53
+ return self.network(x)
54
+
55
+ class ErrorMitigationNetwork(nn.Module):
56
+ """Neural network for quantum error mitigation."""
57
+
58
+ def __init__(self, state_dim: int, hidden_dim: int = 128):
59
+ super().__init__()
60
+ self.encoder = nn.Sequential(
61
+ nn.Linear(state_dim * 2, hidden_dim), # *2 for real and imaginary parts
62
+ nn.ReLU(),
63
+ nn.Linear(hidden_dim, hidden_dim),
64
+ nn.ReLU()
65
+ )
66
+
67
+ self.decoder = nn.Sequential(
68
+ nn.Linear(hidden_dim, hidden_dim),
69
+ nn.ReLU(),
70
+ nn.Linear(hidden_dim, state_dim * 2),
71
+ nn.Tanh()
72
+ )
73
+
74
+ def forward(self, x):
75
+ encoded = self.encoder(x)
76
+ decoded = self.decoder(encoded)
77
+ return decoded
78
+
79
+ class QuantumAIAgent:
80
+ """AI agent for quantum computing optimization."""
81
+
82
+ def __init__(self):
83
+ """Initialize the quantum AI agent."""
84
+ self.optimization_history = []
85
+ self.error_mitigation_net = None
86
+ self.parameter_optimizer = None
87
+ logger.info("QuantumAIAgent initialized")
88
+
89
+ def optimize_quantum_algorithm(self, algorithm: str, hamiltonian: np.ndarray,
90
+ initial_params: np.ndarray) -> Dict[str, Any]:
91
+ """Optimize quantum algorithm parameters."""
92
+ logger.info(f"Optimizing {algorithm} algorithm")
93
+
94
+ if algorithm == "VQE":
95
+ return self._optimize_vqe(hamiltonian, initial_params)
96
+ elif algorithm == "QAOA":
97
+ return self._optimize_qaoa(hamiltonian, initial_params)
98
+ else:
99
+ raise ValueError(f"Unknown algorithm: {algorithm}")
100
+
101
+ def _optimize_vqe(self, hamiltonian: np.ndarray, initial_params: np.ndarray) -> Dict[str, Any]:
102
+ """Optimize VQE parameters."""
103
+ def objective(params):
104
+ # Simulate VQE energy calculation
105
+ # In practice, this would involve quantum circuit simulation
106
+ circuit_result = self._simulate_vqe_circuit(params, hamiltonian)
107
+ return circuit_result
108
+
109
+ # Use classical optimization
110
+ result = minimize(objective, initial_params, method='BFGS')
111
+
112
+ # Create optimal circuit
113
+ optimal_circuit = QuantumCircuit(
114
+ gates=[],
115
+ parameters=result.x,
116
+ num_qubits=int(np.log2(hamiltonian.shape[0])),
117
+ depth=len(result.x) // 2
118
+ )
119
+
120
+ return {
121
+ 'ground_state_energy': result.fun,
122
+ 'optimization_success': result.success,
123
+ 'iterations': result.nit,
124
+ 'optimal_parameters': result.x,
125
+ 'optimal_circuit': optimal_circuit
126
+ }
127
+
128
+ def _optimize_qaoa(self, hamiltonian: np.ndarray, initial_params: np.ndarray) -> Dict[str, Any]:
129
+ """Optimize QAOA parameters."""
130
+ num_layers = len(initial_params) // 2
131
+
132
+ def objective(params):
133
+ beta = params[:num_layers]
134
+ gamma = params[num_layers:]
135
+ return self._simulate_qaoa_circuit(beta, gamma, hamiltonian)
136
+
137
+ result = minimize(objective, initial_params, method='COBYLA')
138
+
139
+ return {
140
+ 'optimal_value': -result.fun, # Minimize negative for maximization
141
+ 'optimization_success': result.success,
142
+ 'iterations': result.nit,
143
+ 'optimal_beta': result.x[:num_layers],
144
+ 'optimal_gamma': result.x[num_layers:]
145
+ }
146
+
147
+ def _simulate_vqe_circuit(self, params: np.ndarray, hamiltonian: np.ndarray) -> float:
148
+ """Simulate VQE circuit and return energy expectation."""
149
+ # Simplified simulation - create parameterized state
150
+ num_qubits = int(np.log2(hamiltonian.shape[0]))
151
+
152
+ # Create a parameterized quantum state (simplified)
153
+ angles = params[:num_qubits]
154
+ state = np.zeros(2**num_qubits, dtype=complex)
155
+
156
+ # Simple parameterization: each qubit gets a rotation
157
+ for i in range(2**num_qubits):
158
+ amplitude = 1.0
159
+ for q in range(num_qubits):
160
+ if (i >> q) & 1:
161
+ amplitude *= np.sin(angles[q % len(angles)])
162
+ else:
163
+ amplitude *= np.cos(angles[q % len(angles)])
164
+ state[i] = amplitude
165
+
166
+ # Normalize
167
+ state = state / np.linalg.norm(state)
168
+
169
+ # Calculate expectation value
170
+ energy = np.real(np.conj(state).T @ hamiltonian @ state)
171
+ return energy
172
+
173
+ def _simulate_qaoa_circuit(self, beta: np.ndarray, gamma: np.ndarray, hamiltonian: np.ndarray) -> float:
174
+ """Simulate QAOA circuit and return objective value."""
175
+ # Simplified QAOA simulation
176
+ num_qubits = int(np.log2(hamiltonian.shape[0]))
177
+
178
+ # Start with uniform superposition
179
+ state = np.ones(2**num_qubits, dtype=complex) / np.sqrt(2**num_qubits)
180
+
181
+ # Apply QAOA layers (simplified)
182
+ for i in range(len(beta)):
183
+ # Problem Hamiltonian evolution (simplified)
184
+ phase_factors = np.exp(-1j * gamma[i] * np.diag(hamiltonian))
185
+ state = phase_factors * state
186
+
187
+ # Mixer Hamiltonian evolution (simplified X rotations)
188
+ # This is a very simplified version
189
+ for q in range(num_qubits):
190
+ # Apply rotation (simplified)
191
+ rotation_factor = np.cos(beta[i]) + 1j * np.sin(beta[i])
192
+ state = state * rotation_factor
193
+
194
+ # Normalize
195
+ state = state / np.linalg.norm(state)
196
+
197
+ # Calculate expectation value
198
+ expectation = np.real(np.conj(state).T @ hamiltonian @ state)
199
+ return -expectation # Return negative for minimization
200
+
201
+ def mitigate_errors(self, quantum_state: QuantumState, noise_model: Dict[str, Any]) -> QuantumState:
202
+ """Apply AI-powered error mitigation."""
203
+ logger.info("Applying error mitigation")
204
+
205
+ # Initialize error mitigation network if not exists
206
+ if self.error_mitigation_net is None:
207
+ state_dim = len(quantum_state.amplitudes)
208
+ self.error_mitigation_net = ErrorMitigationNetwork(state_dim)
209
+
210
+ # Convert quantum state to real input (real and imaginary parts)
211
+ state_real = np.real(quantum_state.amplitudes)
212
+ state_imag = np.imag(quantum_state.amplitudes)
213
+ input_data = np.concatenate([state_real, state_imag])
214
+
215
+ # Apply noise simulation
216
+ noise_factor = noise_model.get('noise_factor', 0.1)
217
+ noisy_input = input_data + np.random.normal(0, noise_factor, input_data.shape)
218
+
219
+ # Apply error mitigation (simplified - in practice would be trained)
220
+ with torch.no_grad():
221
+ input_tensor = torch.FloatTensor(noisy_input).unsqueeze(0)
222
+ corrected_output = self.error_mitigation_net(input_tensor).squeeze(0).numpy()
223
+
224
+ # Convert back to complex amplitudes
225
+ mid_point = len(corrected_output) // 2
226
+ corrected_real = corrected_output[:mid_point]
227
+ corrected_imag = corrected_output[mid_point:]
228
+ corrected_amplitudes = corrected_real + 1j * corrected_imag
229
+
230
+ # Normalize
231
+ corrected_amplitudes = corrected_amplitudes / np.linalg.norm(corrected_amplitudes)
232
+
233
+ # Calculate improved fidelity
234
+ original_fidelity = quantum_state.fidelity
235
+ fidelity_improvement = min(0.1, noise_factor * 0.5) # Simplified improvement
236
+ new_fidelity = min(1.0, original_fidelity + fidelity_improvement)
237
+
238
+ return QuantumState(
239
+ amplitudes=corrected_amplitudes,
240
+ num_qubits=quantum_state.num_qubits,
241
+ fidelity=new_fidelity
242
+ )
243
+
244
+ def optimize_resources(self, circuits: List[QuantumCircuit], available_qubits: int) -> Dict[str, Any]:
245
+ """Optimize quantum resource allocation."""
246
+ logger.info(f"Optimizing resources for {len(circuits)} circuits with {available_qubits} qubits")
247
+
248
+ # Simple scheduling algorithm
249
+ schedule = []
250
+ current_time = 0
251
+ total_qubits_used = 0
252
+
253
+ # Sort circuits by qubit requirement (First-Fit Decreasing)
254
+ sorted_circuits = sorted(enumerate(circuits), key=lambda x: x[1].num_qubits, reverse=True)
255
+
256
+ for circuit_id, circuit in sorted_circuits:
257
+ if circuit.num_qubits <= available_qubits:
258
+ # Estimate execution time based on circuit depth
259
+ estimated_duration = circuit.depth * 0.1 # 0.1 time units per gate
260
+
261
+ schedule.append({
262
+ 'circuit_id': circuit_id,
263
+ 'qubits_allocated': circuit.num_qubits,
264
+ 'start_time': current_time,
265
+ 'estimated_duration': estimated_duration
266
+ })
267
+
268
+ current_time += estimated_duration
269
+ total_qubits_used += circuit.num_qubits
270
+
271
+ # Calculate resource utilization
272
+ max_possible_qubits = len(circuits) * available_qubits
273
+ resource_utilization = total_qubits_used / max_possible_qubits if max_possible_qubits > 0 else 0
274
+
275
+ return {
276
+ 'schedule': schedule,
277
+ 'resource_utilization': resource_utilization,
278
+ 'estimated_runtime': current_time,
279
+ 'circuits_scheduled': len(schedule)
280
+ }
281
+
282
+ def hybrid_processing(self, classical_data: np.ndarray, quantum_component: str) -> Dict[str, Any]:
283
+ """Perform hybrid quantum-classical processing."""
284
+ logger.info(f"Running hybrid processing with {quantum_component}")
285
+
286
+ # Preprocess classical data
287
+ preprocessed_data = self._preprocess_classical_data(classical_data)
288
+
289
+ # Apply quantum component
290
+ if quantum_component == "quantum_kernel":
291
+ quantum_result = self._apply_quantum_kernel(preprocessed_data)
292
+ elif quantum_component == "quantum_feature_map":
293
+ quantum_result = self._apply_quantum_feature_map(preprocessed_data)
294
+ elif quantum_component == "quantum_neural_layer":
295
+ quantum_result = self._apply_quantum_neural_layer(preprocessed_data)
296
+ else:
297
+ raise ValueError(f"Unknown quantum component: {quantum_component}")
298
+
299
+ # Post-process results
300
+ final_result = self._postprocess_quantum_result(quantum_result)
301
+
302
+ return {
303
+ 'preprocessed_data': preprocessed_data,
304
+ 'quantum_result': quantum_result,
305
+ 'final_result': final_result
306
+ }
307
+
308
+ def _preprocess_classical_data(self, data: np.ndarray) -> np.ndarray:
309
+ """Preprocess classical data for quantum processing."""
310
+ # Normalize data
311
+ normalized_data = (data - np.mean(data)) / (np.std(data) + 1e-8)
312
+
313
+ # Apply some classical preprocessing
314
+ processed_data = np.tanh(normalized_data) # Squash to [-1, 1]
315
+
316
+ return processed_data
317
+
318
+ def _apply_quantum_kernel(self, data: np.ndarray) -> np.ndarray:
319
+ """Apply quantum kernel transformation."""
320
+ # Simulate quantum kernel computation
321
+ # In practice, this would involve quantum feature maps
322
+ kernel_matrix = np.zeros((len(data), len(data)))
323
+
324
+ for i in range(len(data)):
325
+ for j in range(len(data)):
326
+ # Simplified quantum kernel (RBF-like with quantum enhancement)
327
+ diff = data[i] - data[j]
328
+ quantum_enhancement = np.cos(np.pi * diff) * np.exp(-0.5 * diff**2)
329
+ kernel_matrix[i, j] = quantum_enhancement
330
+
331
+ return kernel_matrix
332
+
333
+ def _apply_quantum_feature_map(self, data: np.ndarray) -> np.ndarray:
334
+ """Apply quantum feature map."""
335
+ # Simulate quantum feature mapping
336
+ num_features = len(data)
337
+ quantum_features = np.zeros(num_features * 2) # Expand feature space
338
+
339
+ for i, x in enumerate(data):
340
+ # Simulate quantum feature encoding
341
+ quantum_features[2*i] = np.cos(np.pi * x)
342
+ quantum_features[2*i + 1] = np.sin(np.pi * x)
343
+
344
+ return quantum_features
345
+
346
+ def _apply_quantum_neural_layer(self, data: np.ndarray) -> np.ndarray:
347
+ """Apply quantum neural network layer."""
348
+ # Simulate quantum neural network layer
349
+ output_size = len(data)
350
+ quantum_output = np.zeros(output_size)
351
+
352
+ # Simplified quantum neural transformation
353
+ for i, x in enumerate(data):
354
+ # Simulate parameterized quantum circuit
355
+ theta = x * np.pi / 4 # Parameter encoding
356
+ quantum_output[i] = np.cos(theta) * np.exp(-0.1 * x**2)
357
+
358
+ return quantum_output
359
+
360
+ def _postprocess_quantum_result(self, quantum_result: np.ndarray) -> Dict[str, Any]:
361
+ """Post-process quantum results."""
362
+ # Calculate statistics
363
+ stats = {
364
+ 'mean': np.mean(quantum_result),
365
+ 'std': np.std(quantum_result),
366
+ 'min': np.min(quantum_result),
367
+ 'max': np.max(quantum_result)
368
+ }
369
+
370
+ # Calculate confidence (simplified)
371
+ confidence = 1.0 - np.std(quantum_result) / (np.abs(np.mean(quantum_result)) + 1e-8)
372
+ confidence = max(0, min(1, confidence))
373
+
374
+ return {
375
+ 'statistics': stats,
376
+ 'confidence': confidence,
377
+ 'processed_data': quantum_result
378
+ }