CCockrum's picture
Update app.py
6f97cb7 verified
raw
history blame
15.2 kB
import requests
import json
from datetime import datetime, timedelta
import gradio as gr
import pandas as pd
import traceback
import plotly.express as px
import plotly.graph_objects as go
class NasaSsdCneosApi:
def __init__(self):
self.fireball_url = "https://ssd-api.jpl.nasa.gov/fireball.api"
self.ca_url = "https://ssd-api.jpl.nasa.gov/cad.api"
self.nea_url = "https://ssd-api.jpl.nasa.gov/sbdb_query.api"
self.scout_url = "https://ssd-api.jpl.nasa.gov/scout.api"
def get_fireballs(self, limit=10, date_min=None, energy_min=None):
try:
params = {'limit': limit}
if date_min:
params['date-min'] = date_min
if energy_min:
params['energy-min'] = energy_min
response = requests.get(self.fireball_url, params=params)
response.raise_for_status()
return response.json()
except Exception as e:
print("Fireball API Error:", e)
traceback.print_exc()
return None
def get_close_approaches(self, dist_max=None, date_min=None, date_max=None,
h_min=None, h_max=None, v_inf_min=None, v_inf_max=None,
limit=10):
try:
params = {'limit': limit, 'dist-max': dist_max, 'date-min': date_min,
'date-max': date_max, 'h-min': h_min, 'h-max': h_max,
'v-inf-min': v_inf_min, 'v-inf-max': v_inf_max, 'sort': 'date'}
params = {k: v for k, v in params.items() if v is not None}
response = requests.get(self.ca_url, params=params)
response.raise_for_status()
return response.json()
except Exception as e:
print("Close Approaches API Error:", e)
traceback.print_exc()
return None
def get_nea_data(self, des=None, spk_id=None, h_max=None):
try:
# Build query parameter for NEAs - select asteroid with NEA flag
query_params = {
'sb-nea': 'true' # Filter for Near-Earth Asteroids
}
if des:
query_params['sb-spk'] = des
if spk_id:
query_params['sb-spkid'] = spk_id
if h_max:
query_params['sb-h-max'] = h_max
# Add fields to return
query_params['fields'] = 'spkid,full_name,pdes,neo,H,G,diameter,extent,albedo,rot_per,GM,BV,UB,IR,spec_B,spec_T,H_sigma,diameter_sigma,orbit_id,epoch,epoch_mjd,epoch_cal,a,e,i,om,w,ma,ad,n,tp,tp_cal,per,per_y,q,moid,moid_ld,moid_jup'
query_params['limit'] = 100 # Set a reasonable limit
response = requests.get(self.nea_url, params=query_params)
response.raise_for_status()
return response.json()
except Exception as e:
print("NEA API Error:", e)
traceback.print_exc()
return None
def get_scout_data(self, limit=10, nea_comet="NEA"):
try:
params = {'limit': limit}
if nea_comet:
params['nea-comet'] = nea_comet.lower()
response = requests.get(self.scout_url, params=params)
response.raise_for_status()
return response.json()
except Exception as e:
print("Scout API Error:", e)
traceback.print_exc()
return None
def format_response(self, data, format_type):
try:
if not data:
return None
fields = data.get('fields')
rows = data.get('data')
if not fields or not rows:
return None
df = pd.DataFrame([dict(zip(fields, row)) for row in rows])
if format_type == 'fireballs':
return df.rename(columns={
'date': 'Date/Time', 'energy': 'Energy (kt)',
'impact-e': 'Impact Energy (10^10 J)', 'lat': 'Latitude',
'lon': 'Longitude', 'alt': 'Altitude (km)',
'vel': 'Velocity (km/s)'
})
elif format_type == 'close_approaches':
return df.rename(columns={
'des': 'Object', 'orbit_id': 'Orbit ID', 'cd': 'Time (TDB)',
'dist': 'Nominal Distance (au)', 'dist_min': 'Minimum Distance (au)',
'dist_max': 'Maximum Distance (au)', 'v_rel': 'Velocity (km/s)',
'h': 'H (mag)'
})
elif format_type == 'nea':
name_columns = {
'full_name': 'Full Name', 'pdes': 'Designation',
'H': 'Absolute Magnitude (mag)', 'diameter': 'Diameter (km)',
'q': 'Perihelion (au)', 'ad': 'Aphelion (au)',
'i': 'Inclination (deg)', 'e': 'Eccentricity',
'moid': 'MOID (au)', 'moid_ld': 'MOID (LD)'
}
# Use only columns that exist in the dataframe
valid_columns = {k: v for k, v in name_columns.items() if k in df.columns}
return df.rename(columns=valid_columns)
elif format_type == 'scout':
# Handle Scout API response - column names may vary
# Adjust these column mappings based on actual response structure
if 'score' in df.columns:
df = df.rename(columns={
'object': 'Object', 'score': 'Rating',
'diameter': 'Diameter (m)', 'ca_dist': 'Close Approach',
'nobs': 'Observations'
})
return df
return df
except Exception as e:
print("Data formatting error:", e)
traceback.print_exc()
return None
# Gradio Interface Functions
def fetch_fireballs(limit, date_min, energy_min):
api = NasaSsdCneosApi()
# Convert empty strings to None
date_min = date_min if date_min else None
energy_min = float(energy_min) if energy_min else None
data = api.get_fireballs(
limit=int(limit),
date_min=date_min,
energy_min=energy_min
)
df = api.format_response(data, 'fireballs')
if df is None or df.empty:
return "No data available", None
# Create world map of fireballs
if 'Latitude' in df.columns and 'Longitude' in df.columns:
fig = px.scatter_geo(df,
lat='Latitude',
lon='Longitude',
size='Energy (kt)',
hover_name='Date/Time',
projection='natural earth',
title='Fireball Events')
return df, fig
return df, None
def fetch_close_approaches(limit, dist_max, date_min, date_max, h_min, h_max, v_inf_min, v_inf_max):
api = NasaSsdCneosApi()
# Convert empty strings to None
dist_max = float(dist_max) if dist_max else None
date_min = date_min if date_min else None
date_max = date_max if date_max else None
h_min = float(h_min) if h_min else None
h_max = float(h_max) if h_max else None
v_inf_min = float(v_inf_min) if v_inf_min else None
v_inf_max = float(v_inf_max) if v_inf_max else None
data = api.get_close_approaches(
limit=int(limit),
dist_max=dist_max,
date_min=date_min,
date_max=date_max,
h_min=h_min,
h_max=h_max,
v_inf_min=v_inf_min,
v_inf_max=v_inf_max
)
df = api.format_response(data, 'close_approaches')
if df is None or df.empty:
return "No data available", None
# Create scatter plot of distance vs velocity
fig = px.scatter(df,
x='Nominal Distance (au)',
y='Velocity (km/s)',
hover_name='Object',
size='H (mag)',
color='H (mag)',
title='Close Approaches - Distance vs Velocity')
return df, fig
def fetch_nea_data(des, spk_id, h_max):
api = NasaSsdCneosApi()
# Convert empty strings to None
des = des if des else None
spk_id = spk_id if spk_id else None
h_max = float(h_max) if h_max else None
data = api.get_nea_data(
des=des,
spk_id=spk_id,
h_max=h_max
)
df = api.format_response(data, 'nea')
if df is None or df.empty:
return "No data available", None
# Create a scatter plot of perihelion vs aphelion colored by inclination
if not df.empty and 'Perihelion (au)' in df.columns and 'Aphelion (au)' in df.columns:
fig = px.scatter(df,
x='Perihelion (au)',
y='Aphelion (au)',
hover_name='Designation' if 'Designation' in df.columns else None,
color='Inclination (deg)' if 'Inclination (deg)' in df.columns else None,
size='Diameter (km)' if 'Diameter (km)' in df.columns else None,
title='NEA Orbital Parameters')
return df, fig
return df, None
def fetch_scout_data(limit, nea_comet):
api = NasaSsdCneosApi()
data = api.get_scout_data(
limit=int(limit),
nea_comet=nea_comet
)
df = api.format_response(data, 'scout')
if df is None or df.empty:
return "No data available", None
# Create a scatter plot based on available columns
if not df.empty:
# Use columns that are available in the dataframe
x_col = 'Diameter (m)' if 'Diameter (m)' in df.columns else df.columns[0]
y_col = 'Close Approach' if 'Close Approach' in df.columns else df.columns[1]
hover_col = 'Object' if 'Object' in df.columns else None
color_col = 'Rating' if 'Rating' in df.columns else None
size_col = 'Observations' if 'Observations' in df.columns else None
fig = px.scatter(df,
x=x_col,
y=y_col,
hover_name=hover_col,
color=color_col,
size=size_col,
title='Scout Objects')
return df, fig
return df, None
# Create Gradio interface
with gr.Blocks(title="NASA SSD/CNEOS API Explorer") as demo:
gr.Markdown("# NASA SSD/CNEOS API Explorer")
gr.Markdown("Access data from NASA's Center for Near Earth Object Studies")
with gr.Tab("Fireballs"):
gr.Markdown("### Fireball Events")
gr.Markdown("Get information about recent fireball events detected by sensors.")
with gr.Row():
with gr.Column():
fireball_limit = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Limit")
fireball_date = gr.Textbox(label="Minimum Date (YYYY-MM-DD)", placeholder="e.g. 2023-01-01")
fireball_energy = gr.Textbox(label="Minimum Energy (kt)", placeholder="e.g. 0.5")
fireball_submit = gr.Button("Fetch Fireballs")
with gr.Column():
fireball_results = gr.DataFrame(label="Fireball Results")
fireball_map = gr.Plot(label="Fireball Map")
fireball_submit.click(fetch_fireballs, inputs=[fireball_limit, fireball_date, fireball_energy], outputs=[fireball_results, fireball_map])
with gr.Tab("Close Approaches"):
gr.Markdown("### Close Approaches")
gr.Markdown("Get information about close approaches of near-Earth objects.")
with gr.Row():
with gr.Column():
ca_limit = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Limit")
ca_dist_max = gr.Textbox(label="Maximum Distance (AU)", placeholder="e.g. 0.05")
ca_date_min = gr.Textbox(label="Minimum Date (YYYY-MM-DD)", placeholder="e.g. 2023-01-01")
ca_date_max = gr.Textbox(label="Maximum Date (YYYY-MM-DD)", placeholder="e.g. 2023-12-31")
ca_h_min = gr.Textbox(label="Minimum H (mag)", placeholder="e.g. 20")
ca_h_max = gr.Textbox(label="Maximum H (mag)", placeholder="e.g. 30")
ca_v_min = gr.Textbox(label="Minimum Velocity (km/s)", placeholder="e.g. 10")
ca_v_max = gr.Textbox(label="Maximum Velocity (km/s)", placeholder="e.g. 30")
ca_submit = gr.Button("Fetch Close Approaches")
with gr.Column():
ca_results = gr.DataFrame(label="Close Approach Results")
ca_plot = gr.Plot(label="Close Approach Plot")
ca_submit.click(fetch_close_approaches,
inputs=[ca_limit, ca_dist_max, ca_date_min, ca_date_max, ca_h_min, ca_h_max, ca_v_min, ca_v_max],
outputs=[ca_results, ca_plot])
with gr.Tab("NEA Data"):
gr.Markdown("### Near-Earth Asteroid Data")
gr.Markdown("Get information about specific near-Earth asteroids.")
with gr.Row():
with gr.Column():
nea_des = gr.Textbox(label="Designation", placeholder="e.g. 2020 SW")
nea_spk = gr.Textbox(label="SPK-ID", placeholder="e.g. 54101815")
nea_h_max = gr.Textbox(label="Maximum H (mag)", placeholder="e.g. 25")
nea_submit = gr.Button("Fetch NEA Data")
with gr.Column():
nea_results = gr.DataFrame(label="NEA Results")
nea_plot = gr.Plot(label="NEA Orbital Parameters")
nea_submit.click(fetch_nea_data, inputs=[nea_des, nea_spk, nea_h_max], outputs=[nea_results, nea_plot])
with gr.Tab("Scout Data"):
gr.Markdown("### Scout System Data")
gr.Markdown("Get information about newly discovered objects from NASA's Scout system.")
with gr.Row():
with gr.Column():
scout_limit = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Limit")
scout_type = gr.Radio(["NEA", "comet"], label="Object Type", value="NEA")
scout_submit = gr.Button("Fetch Scout Data")
with gr.Column():
scout_results = gr.DataFrame(label="Scout Results")
scout_plot = gr.Plot(label="Scout Objects Plot")
scout_submit.click(fetch_scout_data, inputs=[scout_limit, scout_type], outputs=[scout_results, scout_plot])
gr.Markdown("### About")
gr.Markdown("""
This application provides access to NASA's Solar System Dynamics (SSD) and Center for Near Earth Object Studies (CNEOS) API.
Data is retrieved in real-time from NASA's servers. All data is courtesy of NASA/JPL-Caltech.
Created by [Your Name] using Gradio and Hugging Face Spaces.
""")
# Create requirements.txt file
requirements = """
gradio>=3.50.0
pandas>=1.5.0
plotly>=5.14.0
requests>=2.28.0
"""
with open("requirements.txt", "w") as f:
f.write(requirements)
if __name__ == "__main__":
demo.launch()