Spaces:
Sleeping
Sleeping
File size: 14,482 Bytes
20adb37 78713ad 20adb37 33a0119 20adb37 33a0119 20adb37 33a0119 20adb37 33a0119 20adb37 33a0119 20adb37 33a0119 20adb37 33a0119 2bd5f10 f63c9e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
import gradio as gr
import pandas as pd
import numpy as np
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
from sklearn.ensemble import IsolationForest
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import DBSCAN
from scipy import stats
from typing import Dict, List, Tuple, Any, Optional
import warnings
warnings.filterwarnings('ignore')
class OutlierDetective:
def __init__(self):
self.df = None
self.outlier_results = {}
self.numeric_columns = []
def load_data(self, file_path: str) -> pd.DataFrame:
"""Load data from various file formats"""
try:
if file_path.endswith('.csv'):
df = pd.read_csv(file_path, encoding='utf-8')
elif file_path.endswith(('.xlsx', '.xls')):
df = pd.read_excel(file_path)
elif file_path.endswith('.json'):
df = pd.read_json(file_path)
elif file_path.endswith('.parquet'):
df = pd.read_parquet(file_path)
else:
df = pd.read_csv(file_path)
self.df = df
# Identify numeric columns
self.numeric_columns = df.select_dtypes(include=[np.number]).columns.tolist()
return df
except Exception as e:
raise Exception(f"Error loading file: {str(e)}")
def detect_iqr_outliers(self, column: str) -> Dict[str, Any]:
"""Detect outliers using Interquartile Range (IQR) method"""
if column not in self.numeric_columns:
return {}
series = self.df[column].dropna()
Q1 = series.quantile(0.25)
Q3 = series.quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
outlier_mask = (series < lower_bound) | (series > upper_bound)
outlier_indices = series[outlier_mask].index.tolist()
outlier_values = series[outlier_mask].tolist()
return {
'method': 'IQR',
'lower_bound': lower_bound,
'upper_bound': upper_bound,
'outlier_indices': outlier_indices,
'outlier_values': outlier_values,
'outlier_count': len(outlier_indices),
'outlier_percentage': (len(outlier_indices) / len(series)) * 100,
'explanation': f"Values below {lower_bound:.2f} or above {upper_bound:.2f} are considered outliers"
}
def detect_zscore_outliers(self, column: str, threshold: float = 3) -> Dict[str, Any]:
"""Detect outliers using Z-score method"""
if column not in self.numeric_columns:
return {}
series = self.df[column].dropna()
z_scores = np.abs(stats.zscore(series))
outlier_mask = z_scores > threshold
outlier_indices = series[outlier_mask].index.tolist()
outlier_values = series[outlier_mask].tolist()
outlier_zscores = z_scores[outlier_mask].tolist()
return {
'method': 'Z-Score',
'threshold': threshold,
'outlier_indices': outlier_indices,
'outlier_values': outlier_values,
'outlier_zscores': outlier_zscores,
'outlier_count': len(outlier_indices),
'outlier_percentage': (len(outlier_indices) / len(series)) * 100,
'explanation': f"Values with |z-score| > {threshold} are considered outliers"
}
def detect_modified_zscore_outliers(self, column: str, threshold: float = 3.5) -> Dict[str, Any]:
"""Detect outliers using Modified Z-score (MAD) method"""
if column not in self.numeric_columns:
return {}
series = self.df[column].dropna()
median = series.median()
mad = stats.median_abs_deviation(series)
if mad == 0:
return {
'method': 'Modified Z-Score',
'outlier_count': 0,
'outlier_percentage': 0,
'explanation': "MAD is zero - no outliers detected using this method"
}
modified_z_scores = 0.6745 * (series - median) / mad
outlier_mask = np.abs(modified_z_scores) > threshold
outlier_indices = series[outlier_mask].index.tolist()
outlier_values = series[outlier_mask].tolist()
outlier_scores = modified_z_scores[outlier_mask].tolist()
return {
'method': 'Modified Z-Score',
'threshold': threshold,
'median': median,
'mad': mad,
'outlier_indices': outlier_indices,
'outlier_values': outlier_values,
'outlier_scores': outlier_scores,
'outlier_count': len(outlier_indices),
'outlier_percentage': (len(outlier_indices) / len(series)) * 100,
'explanation': f"Values with |modified z-score| > {threshold} are considered outliers (robust to extreme values)"
}
def detect_isolation_forest_outliers(self, columns: List[str], contamination: float = 0.1) -> Dict[str, Any]:
"""Detect multivariate outliers using Isolation Forest"""
if not columns or len(columns) < 1:
return {}
# Filter to only numeric columns that exist
valid_columns = [col for col in columns if col in self.numeric_columns]
if not valid_columns:
return {}
# Prepare data
data = self.df[valid_columns].dropna()
if len(data) < 10: # Need minimum data points
return {}
# Standardize the data
scaler = StandardScaler()
scaled_data = scaler.fit_transform(data)
# Fit Isolation Forest
iso_forest = IsolationForest(contamination=contamination, random_state=42)
outlier_labels = iso_forest.fit_predict(scaled_data)
# Get outlier indices and scores
outlier_mask = outlier_labels == -1
outlier_indices = data[outlier_mask].index.tolist()
outlier_scores = iso_forest.score_samples(scaled_data)
outlier_score_values = outlier_scores[outlier_mask].tolist()
return {
'method': 'Isolation Forest',
'contamination': contamination,
'columns_used': valid_columns,
'outlier_indices': outlier_indices,
'outlier_scores': outlier_score_values,
'outlier_count': len(outlier_indices),
'outlier_percentage': (len(outlier_indices) / len(data)) * 100,
'explanation': f"Multivariate outlier detection using {len(valid_columns)} features with {contamination*100}% expected contamination"
}
def detect_dbscan_outliers(self, columns: List[str], eps: float = 0.5, min_samples: int = 5) -> Dict[str, Any]:
"""Detect outliers using DBSCAN clustering"""
if not columns or len(columns) < 1:
return {}
# Filter to only numeric columns that exist
valid_columns = [col for col in columns if col in self.numeric_columns]
if not valid_columns:
return {}
# Prepare data
data = self.df[valid_columns].dropna()
if len(data) < min_samples * 2: # Need minimum data points
return {}
# Standardize the data
scaler = StandardScaler()
scaled_data = scaler.fit_transform(data)
# Apply DBSCAN
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
cluster_labels = dbscan.fit_predict(scaled_data)
# Points labeled as -1 are outliers
outlier_mask = cluster_labels == -1
outlier_indices = data[outlier_mask].index.tolist()
# Count clusters
n_clusters = len(set(cluster_labels)) - (1 if -1 in cluster_labels else 0)
return {
'method': 'DBSCAN',
'eps': eps,
'min_samples': min_samples,
'columns_used': valid_columns,
'n_clusters': n_clusters,
'outlier_indices': outlier_indices,
'outlier_count': len(outlier_indices),
'outlier_percentage': (len(outlier_indices) / len(data)) * 100,
'explanation': f"Density-based outlier detection found {n_clusters} clusters using {len(valid_columns)} features"
}
def analyze_outliers(self, selected_columns: List[str] = None, methods: List[str] = None) -> Dict[str, Any]:
"""Comprehensive outlier analysis"""
if self.df is None:
return {}
if selected_columns is None:
selected_columns = self.numeric_columns
else:
# Filter to only numeric columns
selected_columns = [col for col in selected_columns if col in self.numeric_columns]
if not selected_columns:
return {}
if methods is None:
methods = ['IQR', 'Z-Score', 'Modified Z-Score', 'Isolation Forest']
results = {}
# Single-column methods
for column in selected_columns:
results[column] = {}
if 'IQR' in methods:
results[column]['IQR'] = self.detect_iqr_outliers(column)
if 'Z-Score' in methods:
results[column]['Z-Score'] = self.detect_zscore_outliers(column)
if 'Modified Z-Score' in methods:
results[column]['Modified Z-Score'] = self.detect_modified_zscore_outliers(column)
# Multi-column methods
if len(selected_columns) > 1:
if 'Isolation Forest' in methods:
results['Multivariate'] = {}
results['Multivariate']['Isolation Forest'] = self.detect_isolation_forest_outliers(selected_columns)
if 'DBSCAN' in methods:
if 'Multivariate' not in results:
results['Multivariate'] = {}
results['Multivariate']['DBSCAN'] = self.detect_dbscan_outliers(selected_columns)
self.outlier_results = results
return results
def generate_outlier_report(self) -> str:
"""Generate comprehensive outlier analysis report"""
if not self.outlier_results:
return "No outlier analysis results available. Please run the analysis first."
report = "#Outlier Detection Report\n\n"
total_outliers_by_method = {}
all_outlier_indices = set()
for column, methods in self.outlier_results.items():
if column == 'Multivariate':
continue
for method, result in methods.items():
if isinstance(result, dict) and 'outlier_count' in result:
total_outliers_by_method.setdefault(method, 0)
total_outliers_by_method[method] += result['outlier_count']
if 'outlier_indices' in result:
all_outlier_indices.update(result['outlier_indices'])
if 'Multivariate' in self.outlier_results:
for method, result in self.outlier_results['Multivariate'].items():
if isinstance(result, dict) and 'outlier_count' in result:
total_outliers_by_method[method] = result['outlier_count']
if 'outlier_indices' in result:
all_outlier_indices.update(result['outlier_indices'])
report += "## Summary\n"
report += f"- **Total rows analyzed:** {len(self.df):,}\n"
report += f"- **Unique outlier rows found:** {len(all_outlier_indices)}\n"
report += f"- **Percentage of outlier rows:** {(len(all_outlier_indices)/len(self.df)*100):.2f}%\n\n"
report += "### Outliers by Method:\n"
for method, count in total_outliers_by_method.items():
report += f"- **{method}:** {count} outliers\n"
report += "\n## Detailed Results\n\n"
for column, methods in self.outlier_results.items():
if column == 'Multivariate':
continue
report += f"### Column: `{column}`\n\n"
for method, result in methods.items():
if not isinstance(result, dict) or ('outlier_count' in result and result['outlier_count'] == 0):
report += f"**{method}:** No outliers detected\n"
continue
report += f"**{method}:**\n"
report += f"- Outliers found: {result['outlier_count']} ({result['outlier_percentage']:.2f}%)\n"
report += f"- Explanation: {result['explanation']}\n"
if 'outlier_values' in result and result['outlier_values']:
sample_values = result['outlier_values'][:5]
formatted_values = ', '.join([f'{v:.3f}' if isinstance(v, (int, float)) else str(v) for v in sample_values])
report += f"- Example outliers: {formatted_values}"
if len(result['outlier_values']) > 5:
report += f" (and {len(result['outlier_values']) - 5} more)"
report += "\n"
report += "\n"
if 'Multivariate' in self.outlier_results:
report += "### Multivariate Analysis\n\n"
for method, result in self.outlier_results['Multivariate'].items():
if not isinstance(result, dict) or 'outlier_count' not in result:
continue
report += f"**{method}:**\n"
report += f"- Outliers found: {result['outlier_count']} ({result['outlier_percentage']:.2f}%)\n"
report += f"- Explanation: {result['explanation']}\n\n"
return report
if __name__ == "__main__":
def run_outlier_detection(file):
detector = OutlierDetective()
df = detector.load_data(file.name)
detector.analyze_outliers()
return detector.generate_outlier_report()
iface = gr.Interface(fn=run_outlier_detection,
inputs=gr.File(label="Upload a dataset"),
outputs="text",
title="Outlier Detection App")
iface.launch() |