File size: 14,482 Bytes
20adb37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78713ad
20adb37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33a0119
20adb37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33a0119
20adb37
 
 
 
 
33a0119
20adb37
33a0119
20adb37
 
 
 
 
 
 
 
33a0119
 
 
20adb37
 
 
 
 
 
 
 
33a0119
20adb37
 
33a0119
 
 
 
2bd5f10
f63c9e9
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import gradio as gr
import pandas as pd
import numpy as np
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
from sklearn.ensemble import IsolationForest
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import DBSCAN
from scipy import stats
from typing import Dict, List, Tuple, Any, Optional
import warnings
warnings.filterwarnings('ignore')

class OutlierDetective:
    def __init__(self):
        self.df = None
        self.outlier_results = {}
        self.numeric_columns = []
        
    def load_data(self, file_path: str) -> pd.DataFrame:
        """Load data from various file formats"""
        try:
            if file_path.endswith('.csv'):
                df = pd.read_csv(file_path, encoding='utf-8')
            elif file_path.endswith(('.xlsx', '.xls')):
                df = pd.read_excel(file_path)
            elif file_path.endswith('.json'):
                df = pd.read_json(file_path)
            elif file_path.endswith('.parquet'):
                df = pd.read_parquet(file_path)
            else:
                df = pd.read_csv(file_path)
            
            self.df = df
            # Identify numeric columns
            self.numeric_columns = df.select_dtypes(include=[np.number]).columns.tolist()
            return df
        except Exception as e:
            raise Exception(f"Error loading file: {str(e)}")
    
    def detect_iqr_outliers(self, column: str) -> Dict[str, Any]:
        """Detect outliers using Interquartile Range (IQR) method"""
        if column not in self.numeric_columns:
            return {}
        
        series = self.df[column].dropna()
        Q1 = series.quantile(0.25)
        Q3 = series.quantile(0.75)
        IQR = Q3 - Q1
        
        lower_bound = Q1 - 1.5 * IQR
        upper_bound = Q3 + 1.5 * IQR
        
        outlier_mask = (series < lower_bound) | (series > upper_bound)
        outlier_indices = series[outlier_mask].index.tolist()
        outlier_values = series[outlier_mask].tolist()
        
        return {
            'method': 'IQR',
            'lower_bound': lower_bound,
            'upper_bound': upper_bound,
            'outlier_indices': outlier_indices,
            'outlier_values': outlier_values,
            'outlier_count': len(outlier_indices),
            'outlier_percentage': (len(outlier_indices) / len(series)) * 100,
            'explanation': f"Values below {lower_bound:.2f} or above {upper_bound:.2f} are considered outliers"
        }
    
    def detect_zscore_outliers(self, column: str, threshold: float = 3) -> Dict[str, Any]:
        """Detect outliers using Z-score method"""
        if column not in self.numeric_columns:
            return {}
        
        series = self.df[column].dropna()
        z_scores = np.abs(stats.zscore(series))
        
        outlier_mask = z_scores > threshold
        outlier_indices = series[outlier_mask].index.tolist()
        outlier_values = series[outlier_mask].tolist()
        outlier_zscores = z_scores[outlier_mask].tolist()
        
        return {
            'method': 'Z-Score',
            'threshold': threshold,
            'outlier_indices': outlier_indices,
            'outlier_values': outlier_values,
            'outlier_zscores': outlier_zscores,
            'outlier_count': len(outlier_indices),
            'outlier_percentage': (len(outlier_indices) / len(series)) * 100,
            'explanation': f"Values with |z-score| > {threshold} are considered outliers"
        }
    
    def detect_modified_zscore_outliers(self, column: str, threshold: float = 3.5) -> Dict[str, Any]:
        """Detect outliers using Modified Z-score (MAD) method"""
        if column not in self.numeric_columns:
            return {}
        
        series = self.df[column].dropna()
        median = series.median()
        mad = stats.median_abs_deviation(series)
        
        if mad == 0:
            return {
                'method': 'Modified Z-Score',
                'outlier_count': 0,
                'outlier_percentage': 0,
                'explanation': "MAD is zero - no outliers detected using this method"
            }
        
        modified_z_scores = 0.6745 * (series - median) / mad
        
        outlier_mask = np.abs(modified_z_scores) > threshold
        outlier_indices = series[outlier_mask].index.tolist()
        outlier_values = series[outlier_mask].tolist()
        outlier_scores = modified_z_scores[outlier_mask].tolist()
        
        return {
            'method': 'Modified Z-Score',
            'threshold': threshold,
            'median': median,
            'mad': mad,
            'outlier_indices': outlier_indices,
            'outlier_values': outlier_values,
            'outlier_scores': outlier_scores,
            'outlier_count': len(outlier_indices),
            'outlier_percentage': (len(outlier_indices) / len(series)) * 100,
            'explanation': f"Values with |modified z-score| > {threshold} are considered outliers (robust to extreme values)"
        }
    
    def detect_isolation_forest_outliers(self, columns: List[str], contamination: float = 0.1) -> Dict[str, Any]:
        """Detect multivariate outliers using Isolation Forest"""
        if not columns or len(columns) < 1:
            return {}
        
        # Filter to only numeric columns that exist
        valid_columns = [col for col in columns if col in self.numeric_columns]
        if not valid_columns:
            return {}
        
        # Prepare data
        data = self.df[valid_columns].dropna()
        if len(data) < 10:  # Need minimum data points
            return {}
        
        # Standardize the data
        scaler = StandardScaler()
        scaled_data = scaler.fit_transform(data)
        
        # Fit Isolation Forest
        iso_forest = IsolationForest(contamination=contamination, random_state=42)
        outlier_labels = iso_forest.fit_predict(scaled_data)
        
        # Get outlier indices and scores
        outlier_mask = outlier_labels == -1
        outlier_indices = data[outlier_mask].index.tolist()
        outlier_scores = iso_forest.score_samples(scaled_data)
        outlier_score_values = outlier_scores[outlier_mask].tolist()
        
        return {
            'method': 'Isolation Forest',
            'contamination': contamination,
            'columns_used': valid_columns,
            'outlier_indices': outlier_indices,
            'outlier_scores': outlier_score_values,
            'outlier_count': len(outlier_indices),
            'outlier_percentage': (len(outlier_indices) / len(data)) * 100,
            'explanation': f"Multivariate outlier detection using {len(valid_columns)} features with {contamination*100}% expected contamination"
        }
    
    def detect_dbscan_outliers(self, columns: List[str], eps: float = 0.5, min_samples: int = 5) -> Dict[str, Any]:
        """Detect outliers using DBSCAN clustering"""
        if not columns or len(columns) < 1:
            return {}
        
        # Filter to only numeric columns that exist
        valid_columns = [col for col in columns if col in self.numeric_columns]
        if not valid_columns:
            return {}
        
        # Prepare data
        data = self.df[valid_columns].dropna()
        if len(data) < min_samples * 2:  # Need minimum data points
            return {}
        
        # Standardize the data
        scaler = StandardScaler()
        scaled_data = scaler.fit_transform(data)
        
        # Apply DBSCAN
        dbscan = DBSCAN(eps=eps, min_samples=min_samples)
        cluster_labels = dbscan.fit_predict(scaled_data)
        
        # Points labeled as -1 are outliers
        outlier_mask = cluster_labels == -1
        outlier_indices = data[outlier_mask].index.tolist()
        
        # Count clusters
        n_clusters = len(set(cluster_labels)) - (1 if -1 in cluster_labels else 0)
        
        return {
            'method': 'DBSCAN',
            'eps': eps,
            'min_samples': min_samples,
            'columns_used': valid_columns,
            'n_clusters': n_clusters,
            'outlier_indices': outlier_indices,
            'outlier_count': len(outlier_indices),
            'outlier_percentage': (len(outlier_indices) / len(data)) * 100,
            'explanation': f"Density-based outlier detection found {n_clusters} clusters using {len(valid_columns)} features"
        }
    
    def analyze_outliers(self, selected_columns: List[str] = None, methods: List[str] = None) -> Dict[str, Any]:
        """Comprehensive outlier analysis"""
        if self.df is None:
            return {}
        
        if selected_columns is None:
            selected_columns = self.numeric_columns
        else:
            # Filter to only numeric columns
            selected_columns = [col for col in selected_columns if col in self.numeric_columns]
        
        if not selected_columns:
            return {}
        
        if methods is None:
            methods = ['IQR', 'Z-Score', 'Modified Z-Score', 'Isolation Forest']
        
        results = {}
        
        # Single-column methods
        for column in selected_columns:
            results[column] = {}
            
            if 'IQR' in methods:
                results[column]['IQR'] = self.detect_iqr_outliers(column)
            
            if 'Z-Score' in methods:
                results[column]['Z-Score'] = self.detect_zscore_outliers(column)
            
            if 'Modified Z-Score' in methods:
                results[column]['Modified Z-Score'] = self.detect_modified_zscore_outliers(column)
        
        # Multi-column methods
        if len(selected_columns) > 1:
            if 'Isolation Forest' in methods:
                results['Multivariate'] = {}
                results['Multivariate']['Isolation Forest'] = self.detect_isolation_forest_outliers(selected_columns)
            
            if 'DBSCAN' in methods:
                if 'Multivariate' not in results:
                    results['Multivariate'] = {}
                results['Multivariate']['DBSCAN'] = self.detect_dbscan_outliers(selected_columns)
        
        self.outlier_results = results
        return results
    
    def generate_outlier_report(self) -> str:
        """Generate comprehensive outlier analysis report"""
        if not self.outlier_results:
            return "No outlier analysis results available. Please run the analysis first."
        
        report = "#Outlier Detection Report\n\n"
        
        total_outliers_by_method = {}
        all_outlier_indices = set()
        
        for column, methods in self.outlier_results.items():
            if column == 'Multivariate':
                continue
            
            for method, result in methods.items():
                if isinstance(result, dict) and 'outlier_count' in result:
                    total_outliers_by_method.setdefault(method, 0)
                    total_outliers_by_method[method] += result['outlier_count']
                    if 'outlier_indices' in result:
                        all_outlier_indices.update(result['outlier_indices'])
        
        if 'Multivariate' in self.outlier_results:
            for method, result in self.outlier_results['Multivariate'].items():
                if isinstance(result, dict) and 'outlier_count' in result:
                    total_outliers_by_method[method] = result['outlier_count']
                    if 'outlier_indices' in result:
                        all_outlier_indices.update(result['outlier_indices'])
        
        report += "## Summary\n"
        report += f"- **Total rows analyzed:** {len(self.df):,}\n"
        report += f"- **Unique outlier rows found:** {len(all_outlier_indices)}\n"
        report += f"- **Percentage of outlier rows:** {(len(all_outlier_indices)/len(self.df)*100):.2f}%\n\n"
        
        report += "### Outliers by Method:\n"
        for method, count in total_outliers_by_method.items():
            report += f"- **{method}:** {count} outliers\n"
        
        report += "\n## Detailed Results\n\n"
        
        for column, methods in self.outlier_results.items():
            if column == 'Multivariate':
                continue
            
            report += f"### Column: `{column}`\n\n"
            for method, result in methods.items():
                if not isinstance(result, dict) or ('outlier_count' in result and result['outlier_count'] == 0):
                    report += f"**{method}:** No outliers detected\n"
                    continue
                
                report += f"**{method}:**\n"
                report += f"- Outliers found: {result['outlier_count']} ({result['outlier_percentage']:.2f}%)\n"
                report += f"- Explanation: {result['explanation']}\n"
                
                if 'outlier_values' in result and result['outlier_values']:
                    sample_values = result['outlier_values'][:5]
                    formatted_values = ', '.join([f'{v:.3f}' if isinstance(v, (int, float)) else str(v) for v in sample_values])
                    report += f"- Example outliers: {formatted_values}"
                    if len(result['outlier_values']) > 5:
                        report += f" (and {len(result['outlier_values']) - 5} more)"
                    report += "\n"
                report += "\n"
        
        if 'Multivariate' in self.outlier_results:
            report += "### Multivariate Analysis\n\n"
            for method, result in self.outlier_results['Multivariate'].items():
                if not isinstance(result, dict) or 'outlier_count' not in result:
                    continue
                report += f"**{method}:**\n"
                report += f"- Outliers found: {result['outlier_count']} ({result['outlier_percentage']:.2f}%)\n"
                report += f"- Explanation: {result['explanation']}\n\n"
        
        return report

if __name__ == "__main__":
    def run_outlier_detection(file):
        detector = OutlierDetective()
        df = detector.load_data(file.name)
        detector.analyze_outliers()
        return detector.generate_outlier_report()

    iface = gr.Interface(fn=run_outlier_detection, 
                         inputs=gr.File(label="Upload a dataset"), 
                         outputs="text", 
                         title="Outlier Detection App")
    iface.launch()