Stock-Analyser / app.py
CCockrum's picture
Update app.py
d780f21 verified
raw
history blame
9.36 kB
import pandas as pd
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
import requests
import os
from transformers import pipeline
import datetime
import tempfile
# Initialize Summarizer
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# Polygon API Key
POLYGON_API_KEY = os.getenv("POLYGON_API_KEY")
# Sector Averages
sector_averages = {
"Technology": {"P/E Ratio": 25, "P/S Ratio": 5, "P/B Ratio": 6},
"Healthcare": {"P/E Ratio": 20, "P/S Ratio": 4, "P/B Ratio": 3},
"Financials": {"P/E Ratio": 15, "P/S Ratio": 2, "P/B Ratio": 1.5},
"Energy": {"P/E Ratio": 12, "P/S Ratio": 1.2, "P/B Ratio": 1.3},
}
# Helper Functions
def safe_request(url):
try:
response = requests.get(url)
response.raise_for_status()
return response
except requests.exceptions.HTTPError as http_err:
print(f"DEBUG: HTTP error occurred: {http_err}")
except Exception as err:
print(f"DEBUG: Other error occurred: {err}")
return None
def get_company_info(symbol):
api_key = os.getenv("POLYGON_API_KEY")
if not api_key:
print("DEBUG: API Key is missing!")
return None
url = f"https://api.polygon.io/v3/reference/tickers/{symbol}?apiKey={api_key}"
response = safe_request(url)
if response:
data = response.json().get('results', {})
return {
'Name': data.get('name', 'N/A'),
'Industry': data.get('sic_description', 'N/A'),
'Sector': data.get('market', 'N/A'),
'Market Cap': data.get('market_cap', 0),
'Total Revenue': data.get('total_employees', 0) * 100000
}
return None
def get_current_price(symbol):
api_key = os.getenv("POLYGON_API_KEY")
url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/prev?adjusted=true&apiKey={api_key}"
response = safe_request(url)
if response:
data = response.json()['results'][0]
return float(data['c'])
return None
def get_dividends(symbol):
api_key = os.getenv("POLYGON_API_KEY")
url = f"https://api.polygon.io/v3/reference/dividends?ticker={symbol}&apiKey={api_key}"
response = safe_request(url)
if response:
data = response.json()['results'][0]
return {
'Dividend Amount': data.get('cash_amount', 0),
'Ex-Dividend Date': data.get('ex_dividend_date', 'N/A')
}
return {'Dividend Amount': 0, 'Ex-Dividend Date': 'N/A'}
def get_historical_prices(symbol):
api_key = os.getenv("POLYGON_API_KEY")
end = datetime.date.today()
start = end - datetime.timedelta(days=365)
url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/range/1/day/{start}/{end}?adjusted=true&sort=asc&apiKey={api_key}"
response = safe_request(url)
if response:
results = response.json()['results']
dates = [datetime.datetime.fromtimestamp(r['t']/1000) for r in results]
prices = [r['c'] for r in results]
return dates, prices
return [], []
def generate_summary(info, ratios):
recommendation = "Hold"
if ratios['P/E Ratio'] < 15 and ratios['P/B Ratio'] < 2 and ratios['PEG Ratio'] < 1.0 and ratios['Dividend Yield (%)'] > 2:
recommendation = "Buy"
elif ratios['P/E Ratio'] > 30 and ratios['P/B Ratio'] > 5 and ratios['PEG Ratio'] > 2.0:
recommendation = "Sell"
report = (
f"Company Overview:\n"
f"Name: {info['Name']}\n"
f"Industry: {info['Industry']}\n"
f"Sector: {info['Sector']}\n"
f"Market Cap: ${info['Market Cap']:,.2f}\n\n"
f"Financial Metrics:\n"
f"P/E Ratio: {ratios['P/E Ratio']:.2f}\n"
f"P/S Ratio: {ratios['P/S Ratio']:.2f}\n"
f"P/B Ratio: {ratios['P/B Ratio']:.2f}\n"
f"PEG Ratio: {ratios['PEG Ratio']:.2f}\n"
f"Dividend Yield: {ratios['Dividend Yield (%)']:.2f}%\n\n"
f"Recommended Investment Action: {recommendation}.\n\n"
f"Please provide a detailed financial analysis based on the information above."
)
summary = summarizer(report, max_length=250, min_length=100, do_sample=False)[0]['summary_text']
return summary
def answer_investing_question(question):
prompt = (
f"Someone asked: '{question}'. "
f"Please answer clearly, simply, and in a conversational tone without restating the question. "
f"Keep the answer beginner-friendly and encouraging."
)
response = summarizer(prompt, max_length=200, min_length=60, do_sample=False)[0]['summary_text']
return response
# (Rest of the app continues with stock_research, download_report, and Gradio UI, including improved Valuation Ratios with sector ideal comparison and polished UI.)
def calculate_ratios(market_cap, total_revenue, price, dividend_amount, assumed_eps=5.0, growth_rate=0.1, book_value=500000000):
pe_ratio = price / assumed_eps if assumed_eps else 0
ps_ratio = market_cap / total_revenue if total_revenue else 0
pb_ratio = market_cap / book_value if book_value else 0
peg_ratio = pe_ratio / (growth_rate * 100) if growth_rate else 0
dividend_yield = (dividend_amount / price) * 100 if price else 0
return {
'P/E Ratio': pe_ratio,
'P/S Ratio': ps_ratio,
'P/B Ratio': pb_ratio,
'PEG Ratio': peg_ratio,
'Dividend Yield (%)': dividend_yield
}
def compare_to_sector(sector, ratios):
if sector.lower() == 'stocks':
sector = 'Technology' # Fallback
averages = sector_averages.get(sector, None)
if not averages:
return pd.DataFrame({"Metric": ["Sector data not available"], "Value": ["N/A"]})
comparison = {}
for key in averages:
stock_value = ratios.get(key, 0)
sector_value = averages[key]
comparison[key] = f"{stock_value:.2f} vs Sector Avg {sector_value:.2f}"
return pd.DataFrame({"Ratio": list(comparison.keys()), "Comparison": list(comparison.values())})
def stock_research(symbol, assumed_eps=5.0, growth_rate=0.1, book_value=500000000):
info = get_company_info(symbol)
price = get_current_price(symbol)
dividends = get_dividends(symbol)
dates, prices = get_historical_prices(symbol)
if not info or not price:
return "⚠️ Error: Could not fetch stock information. Please check your API Key or ticker.", None, None, None, None, None
ratios = calculate_ratios(info['Market Cap'], info['Total Revenue'], price, dividends['Dividend Amount'], assumed_eps, growth_rate, book_value)
summary = generate_summary(info, ratios)
# Apply fallback for sector
sector = info.get('Sector', 'Technology')
sector_comp = compare_to_sector(sector, ratios)
fig, ax = plt.subplots()
ax.plot(dates, prices, label=f"{symbol} Price")
ax.set_title(f"{symbol} Historical Price (1 Year)")
ax.set_xlabel("Date")
ax.set_ylabel("Price ($)")
ax.legend()
ax.grid(True)
info_table = pd.DataFrame({
"Metric": list(info.keys()),
"Value": [f"${v:,.0f}" if isinstance(v, (int, float)) and abs(v) > 1000 else v for v in info.values()]
})
ratios_table = pd.DataFrame({
"Ratio": list(ratios.keys()),
"Value": [f"{v:.3f}" if isinstance(v, float) else v for v in ratios.values()]
})
return summary, info_table, ratios_table, sector_comp, fig
def download_report(info_table, ratios_table, sector_comp, summary):
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode='w') as f:
info_table.to_csv(f, index=False)
f.write("\n")
ratios_table.to_csv(f, index=False)
f.write("\n")
sector_comp.to_csv(f, index=False)
f.write("\nSummary\n")
f.write(summary)
file_path = f.name
return file_path
# --- Gradio UI ---
with gr.Blocks() as iface:
with gr.Row():
symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)")
eps = gr.Number(label="Assumed EPS", value=5.0)
growth = gr.Number(label="Assumed Growth Rate", value=0.1)
book = gr.Number(label="Assumed Book Value", value=500000000)
with gr.Tabs():
with gr.Tab("AI Research Summary"):
output_summary = gr.Textbox()
with gr.Tab("Company Snapshot"):
output_info = gr.Dataframe()
with gr.Tab("Valuation Ratios"):
output_ratios = gr.Dataframe()
with gr.Tab("Sector Comparison"):
output_sector = gr.Dataframe()
with gr.Tab("Historical Price Chart"):
output_chart = gr.Plot()
with gr.Tab("Ask About Investing"):
user_question = gr.Textbox(label="Ask a question about investing...")
answer_box = gr.Textbox(label="Answer")
ask_button = gr.Button("Get Answer")
ask_button.click(fn=answer_investing_question, inputs=[user_question], outputs=[answer_box])
submit_btn = gr.Button("Run Analysis")
download_btn = gr.Button("Download Report")
file_output = gr.File()
submit_btn.click(fn=stock_research, inputs=[symbol, eps, growth, book],
outputs=[output_summary, output_info, output_ratios, output_sector, output_chart])
download_btn.click(fn=download_report, inputs=[output_info, output_ratios, output_sector, output_summary],
outputs=file_output)
if __name__ == "__main__":
iface.launch()