Spaces:
Running
Running
import pandas as pd | |
import numpy as np | |
import gradio as gr | |
import matplotlib.pyplot as plt | |
import requests | |
import os | |
from transformers import pipeline | |
import datetime | |
# Initialize Summarizer | |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") | |
# Polygon API Key | |
POLYGON_API_KEY = os.getenv("POLYGON_API_KEY") | |
# Helper Functions | |
def get_company_info(symbol): | |
url = f"https://api.polygon.io/v3/reference/tickers/{symbol}?apiKey={POLYGON_API_KEY}" | |
try: | |
response = requests.get(url) | |
response.raise_for_status() | |
data = response.json()['results'] | |
return { | |
'Name': data.get('name', 'N/A'), | |
'Industry': data.get('sic_description', 'N/A'), | |
'Market Cap': data.get('market_cap', 0), | |
'Total Revenue': data.get('total_employees', 0) * 100000 # Rough estimation | |
} | |
except Exception as e: | |
print(f"DEBUG: Error fetching company info: {e}") | |
return None | |
def get_current_price(symbol): | |
url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/prev?adjusted=true&apiKey={POLYGON_API_KEY}" | |
try: | |
response = requests.get(url) | |
response.raise_for_status() | |
data = response.json()['results'][0] | |
return float(data['c']) | |
except Exception as e: | |
print(f"DEBUG: Error fetching price: {e}") | |
return None | |
def get_dividends(symbol): | |
url = f"https://api.polygon.io/v3/reference/dividends?ticker={symbol}&apiKey={POLYGON_API_KEY}" | |
try: | |
response = requests.get(url) | |
response.raise_for_status() | |
data = response.json()['results'][0] | |
return { | |
'Dividend Amount': data.get('cash_amount', 0), | |
'Ex-Dividend Date': data.get('ex_dividend_date', 'N/A') | |
} | |
except Exception as e: | |
print(f"DEBUG: Error fetching dividends: {e}") | |
return {'Dividend Amount': 0, 'Ex-Dividend Date': 'N/A'} | |
def get_historical_prices(symbol): | |
end = datetime.date.today() | |
start = end - datetime.timedelta(days=365) | |
url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/range/1/day/{start}/{end}?adjusted=true&sort=asc&apiKey={POLYGON_API_KEY}" | |
try: | |
response = requests.get(url) | |
response.raise_for_status() | |
results = response.json()['results'] | |
dates = [datetime.datetime.fromtimestamp(r['t']/1000) for r in results] | |
prices = [r['c'] for r in results] | |
return dates, prices | |
except Exception as e: | |
print(f"DEBUG: Error fetching historical prices: {e}") | |
return [], [] | |
def calculate_ratios(market_cap, total_revenue, price, assumed_eps=5.0, growth_rate=0.1, book_value=500000000): | |
pe_ratio = price / assumed_eps if assumed_eps else 0 | |
ps_ratio = market_cap / total_revenue if total_revenue else 0 | |
pb_ratio = market_cap / book_value if book_value else 0 | |
peg_ratio = pe_ratio / (growth_rate * 100) if growth_rate else 0 | |
return { | |
'P/E Ratio': pe_ratio, | |
'P/S Ratio': ps_ratio, | |
'P/B Ratio': pb_ratio, | |
'PEG Ratio': peg_ratio | |
} | |
def generate_summary(info, ratios): | |
text = (f"{info['Name']} operates in the {info['Industry']} sector. It has a market capitalization of " | |
f"${info['Market Cap']:,.2f}. The company exhibits a P/E ratio of {ratios['P/E Ratio']:.2f}, " | |
f"P/S ratio of {ratios['P/S Ratio']:.2f}, and P/B ratio of {ratios['P/B Ratio']:.2f}. " | |
f"This suggests a {'potential undervaluation' if ratios['P/E Ratio'] < 20 else 'higher valuation'} relative to the market.") | |
summary = summarizer(text, max_length=120, min_length=30, do_sample=False)[0]['summary_text'] | |
return summary | |
def stock_research(symbol, assumed_eps=5.0, growth_rate=0.1, book_value=500000000): | |
info = get_company_info(symbol) | |
price = get_current_price(symbol) | |
dividends = get_dividends(symbol) | |
dates, prices = get_historical_prices(symbol) | |
if not info or not price: | |
return "Error fetching stock information.", None, None, None | |
ratios = calculate_ratios(info['Market Cap'], info['Total Revenue'], price, assumed_eps, growth_rate, book_value) | |
summary = generate_summary(info, ratios) | |
# Create historical price chart | |
fig, ax = plt.subplots() | |
ax.plot(dates, prices, label=f"{symbol} Price") | |
ax.set_title(f"{symbol} Historical Price (1 Year)") | |
ax.set_xlabel("Date") | |
ax.set_ylabel("Price ($)") | |
ax.legend() | |
ax.grid(True) | |
info_table = pd.DataFrame({"Metric": list(info.keys()), "Value": list(info.values())}) | |
ratios_table = pd.DataFrame({"Ratio": list(ratios.keys()), "Value": list(ratios.values())}) | |
return summary, info_table, ratios_table, fig | |
iface = gr.Interface( | |
fn=stock_research, | |
inputs=[ | |
gr.Textbox(label="Stock Symbol (e.g., AAPL)"), | |
gr.Number(label="Assumed EPS (default 5.0)"), | |
gr.Number(label="Assumed Growth Rate (e.g., 0.1 for 10%)"), | |
gr.Number(label="Assumed Book Value ($, default 500M)") | |
], | |
outputs=[ | |
gr.Textbox(label="AI Research Summary"), | |
gr.Dataframe(label="Company Snapshot"), | |
gr.Dataframe(label="Valuation Ratios"), | |
gr.Plot(label="Historical Price Chart") | |
], | |
title="AI-Powered Stock Researcher", | |
description="Enter a stock symbol to get company info, valuation ratios, a 1-year price chart, and an AI-generated research summary based on live Polygon.io data." | |
) | |
if __name__ == "__main__": | |
iface.launch() | |