Stock-Analyser / app.py
CCockrum's picture
Create app.py
54e930d verified
raw
history blame
5.47 kB
import pandas as pd
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
import requests
import os
from transformers import pipeline
import datetime
# Initialize Summarizer
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# Polygon API Key
POLYGON_API_KEY = os.getenv("POLYGON_API_KEY")
# Helper Functions
def get_company_info(symbol):
url = f"https://api.polygon.io/v3/reference/tickers/{symbol}?apiKey={POLYGON_API_KEY}"
try:
response = requests.get(url)
response.raise_for_status()
data = response.json()['results']
return {
'Name': data.get('name', 'N/A'),
'Industry': data.get('sic_description', 'N/A'),
'Market Cap': data.get('market_cap', 0),
'Total Revenue': data.get('total_employees', 0) * 100000 # Rough estimation
}
except Exception as e:
print(f"DEBUG: Error fetching company info: {e}")
return None
def get_current_price(symbol):
url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/prev?adjusted=true&apiKey={POLYGON_API_KEY}"
try:
response = requests.get(url)
response.raise_for_status()
data = response.json()['results'][0]
return float(data['c'])
except Exception as e:
print(f"DEBUG: Error fetching price: {e}")
return None
def get_dividends(symbol):
url = f"https://api.polygon.io/v3/reference/dividends?ticker={symbol}&apiKey={POLYGON_API_KEY}"
try:
response = requests.get(url)
response.raise_for_status()
data = response.json()['results'][0]
return {
'Dividend Amount': data.get('cash_amount', 0),
'Ex-Dividend Date': data.get('ex_dividend_date', 'N/A')
}
except Exception as e:
print(f"DEBUG: Error fetching dividends: {e}")
return {'Dividend Amount': 0, 'Ex-Dividend Date': 'N/A'}
def get_historical_prices(symbol):
end = datetime.date.today()
start = end - datetime.timedelta(days=365)
url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/range/1/day/{start}/{end}?adjusted=true&sort=asc&apiKey={POLYGON_API_KEY}"
try:
response = requests.get(url)
response.raise_for_status()
results = response.json()['results']
dates = [datetime.datetime.fromtimestamp(r['t']/1000) for r in results]
prices = [r['c'] for r in results]
return dates, prices
except Exception as e:
print(f"DEBUG: Error fetching historical prices: {e}")
return [], []
def calculate_ratios(market_cap, total_revenue, price, assumed_eps=5.0, growth_rate=0.1, book_value=500000000):
pe_ratio = price / assumed_eps if assumed_eps else 0
ps_ratio = market_cap / total_revenue if total_revenue else 0
pb_ratio = market_cap / book_value if book_value else 0
peg_ratio = pe_ratio / (growth_rate * 100) if growth_rate else 0
return {
'P/E Ratio': pe_ratio,
'P/S Ratio': ps_ratio,
'P/B Ratio': pb_ratio,
'PEG Ratio': peg_ratio
}
def generate_summary(info, ratios):
text = (f"{info['Name']} operates in the {info['Industry']} sector. It has a market capitalization of "
f"${info['Market Cap']:,.2f}. The company exhibits a P/E ratio of {ratios['P/E Ratio']:.2f}, "
f"P/S ratio of {ratios['P/S Ratio']:.2f}, and P/B ratio of {ratios['P/B Ratio']:.2f}. "
f"This suggests a {'potential undervaluation' if ratios['P/E Ratio'] < 20 else 'higher valuation'} relative to the market.")
summary = summarizer(text, max_length=120, min_length=30, do_sample=False)[0]['summary_text']
return summary
def stock_research(symbol, assumed_eps=5.0, growth_rate=0.1, book_value=500000000):
info = get_company_info(symbol)
price = get_current_price(symbol)
dividends = get_dividends(symbol)
dates, prices = get_historical_prices(symbol)
if not info or not price:
return "Error fetching stock information.", None, None, None
ratios = calculate_ratios(info['Market Cap'], info['Total Revenue'], price, assumed_eps, growth_rate, book_value)
summary = generate_summary(info, ratios)
# Create historical price chart
fig, ax = plt.subplots()
ax.plot(dates, prices, label=f"{symbol} Price")
ax.set_title(f"{symbol} Historical Price (1 Year)")
ax.set_xlabel("Date")
ax.set_ylabel("Price ($)")
ax.legend()
ax.grid(True)
info_table = pd.DataFrame({"Metric": list(info.keys()), "Value": list(info.values())})
ratios_table = pd.DataFrame({"Ratio": list(ratios.keys()), "Value": list(ratios.values())})
return summary, info_table, ratios_table, fig
iface = gr.Interface(
fn=stock_research,
inputs=[
gr.Textbox(label="Stock Symbol (e.g., AAPL)"),
gr.Number(label="Assumed EPS (default 5.0)"),
gr.Number(label="Assumed Growth Rate (e.g., 0.1 for 10%)"),
gr.Number(label="Assumed Book Value ($, default 500M)")
],
outputs=[
gr.Textbox(label="AI Research Summary"),
gr.Dataframe(label="Company Snapshot"),
gr.Dataframe(label="Valuation Ratios"),
gr.Plot(label="Historical Price Chart")
],
title="AI-Powered Stock Researcher",
description="Enter a stock symbol to get company info, valuation ratios, a 1-year price chart, and an AI-generated research summary based on live Polygon.io data."
)
if __name__ == "__main__":
iface.launch()