Spaces:
Running
Running
import os | |
import gradio as gr | |
from inference.inference import load_disease_pipeline, diagnose | |
""" | |
Step 5: Gradio demo for disease-only model with example images | |
""" | |
# load your published model or local checkpoint | |
pipe = load_disease_pipeline("linkanjarad/mobilenet_v2_1.0_224-plant-disease-identification") | |
# Path to examples folder | |
examples = [ | |
["Plants/Unhealthy_crop_1.jpg"], | |
["Plants/Unhealthy_crop_2.jpg"], | |
["Plants/Unhealthy_crop_3.jpg"], | |
["Plants/Unhealthy_crop_4.jpg"], | |
["Plants/Unhealthy_crop_5.jpg"], | |
["Plants/Healthy_crop_1.jpg"], | |
["Plants/Healthy_crop_2.jpg"] | |
] | |
iface = gr.Interface( | |
fn=lambda img: diagnose(img, pipe), | |
inputs=gr.Image(type="pil", label="Upload Leaf Image"), | |
outputs=[ | |
gr.Textbox(label="Disease Predictions (Top 3)"), | |
gr.Textbox(label="Care Advice") | |
], | |
title="Plant Disease Monitor", | |
description="Upload a crop leaf photo to detect diseases using a fine-tuned model.", | |
examples=examples, | |
allow_flagging="never" | |
) | |
if __name__ == "__main__": | |
iface.launch() |