Spaces:
Running
Running
File size: 1,948 Bytes
5575a7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import gradio as gr
import numpy as np
from keras.preprocessing import image
from Model_Load import load_model_from_files
from description import description
# Load model dan label
model = load_model_from_files("model.json", "my_model.h5")
labels = [
"Benteng Vredeburg", "Candi Borobudur", "Candi Prambanan", "Gedung Agung Istana Kepresidenan",
"Masjid Gedhe Kauman", "Monumen Serangan 1 Maret", "Museum Gunungapi Merapi",
"Situs Ratu Boko", "Taman Sari", "Tugu Yogyakarta"
]
# Fungsi preprocessing dan prediksi
def classify_image(img):
img = img.resize((224, 224))
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0)
img_array = img_array / 255.0
pred = model.predict(img_array)[0]
confidence = np.max(pred)
predicted_label = labels[np.argmax(pred)]
if confidence < 0.5:
return "Tidak dapat dikenali", "Tolong arahkan ke objek yang jelas agar bisa diidentifikasikan. Pastikan anda berada di salah satu tempat Benteng_Vredeburg Candi_Borobudur, Candi_Prambanan, Gedung_Agung_Istana_Kepresidenan_Yogyakarta, Masjid_Gedhe_Kauman, Monumen_Serangan_1Maret, Museum_Gunungapi_Merapi, Situs_Ratu_Boko, Taman_Sari, Tugu_Yogyakarta"
else:
deskripsi = description.get(predicted_label, "Deskripsi belum tersedia.")
label_output = f"{predicted_label} (Confidence: {confidence * 100:.2f}%)"
return label_output, deskripsi
# Buat antarmuka Gradio
demo = gr.Interface(
fn=classify_image,
inputs=gr.Image(type="pil", label="Upload Gambar"),
outputs=[
gr.Textbox(label="Output Klasifikasi"),
gr.Textbox(label="Deskripsi Lengkap", lines=20, max_lines=50)
],
allow_flagging="never",
title="Klasifikasi Gambar",
description="Upload gambar kami akan mengklasifikasikan dan memberikan deskripsi mengenai gambar tersebut."
)
# Launch untuk Hugging Face Spaces
if __name__ == "__main__":
demo.launch() |