Spaces:
Running
Running
menambahkan keras load model from jso
Browse files
app.py
CHANGED
@@ -1,47 +1,44 @@
|
|
1 |
import os
|
2 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
3 |
import keras
|
4 |
-
print("keras versio:", keras.__version__)
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
from keras.preprocessing import image
|
8 |
-
from Model_Load import load_model_from_files
|
9 |
-
from description import description
|
10 |
-
from location import location
|
11 |
from fastapi import FastAPI, File, UploadFile
|
12 |
from fastapi.responses import JSONResponse
|
13 |
from io import BytesIO
|
14 |
from PIL import Image
|
15 |
-
from tensorflow.keras.models import model_from_json
|
16 |
import tensorflow as tf
|
17 |
import logging
|
18 |
from fastapi.middleware.cors import CORSMiddleware
|
19 |
-
from keras.models import
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
model = model_from_json(loaded_model_json)
|
25 |
-
model.load_weights(weights_path)
|
26 |
-
return model
|
27 |
|
28 |
# Nonaktifkan GPU (jika tidak digunakan)
|
29 |
tf.config.set_visible_devices([], 'GPU')
|
30 |
|
31 |
# Inisialisasi logger
|
32 |
logging.basicConfig(level=logging.INFO)
|
33 |
-
logger = logging.getLogger(
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
# Load model
|
36 |
-
model =
|
37 |
|
|
|
38 |
labels = [
|
39 |
"Benteng Vredeburg", "Candi Borobudur", "Candi Prambanan", "Gedung Agung Istana Kepresidenan",
|
40 |
"Masjid Gedhe Kauman", "Monumen Serangan 1 Maret", "Museum Gunungapi Merapi",
|
41 |
"Situs Ratu Boko", "Taman Sari", "Tugu Yogyakarta"
|
42 |
]
|
43 |
|
44 |
-
# Fungsi
|
45 |
def classify_image(img):
|
46 |
img = img.resize((224, 224))
|
47 |
img_array = image.img_to_array(img)
|
@@ -81,7 +78,7 @@ def create_app():
|
|
81 |
|
82 |
app.add_middleware(
|
83 |
CORSMiddleware,
|
84 |
-
allow_origins=["http://localhost:9000"], # atau sesuaikan
|
85 |
allow_credentials=True,
|
86 |
allow_methods=["*"],
|
87 |
allow_headers=["*"],
|
@@ -115,8 +112,8 @@ def create_app():
|
|
115 |
app = gr.mount_gradio_app(app, gradio_app, path="/gradio")
|
116 |
return app
|
117 |
|
118 |
-
#
|
119 |
-
if
|
120 |
import uvicorn
|
121 |
app = create_app()
|
122 |
-
uvicorn.run(app, host="127.0.0.1", port=8000)
|
|
|
1 |
import os
|
2 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
3 |
import keras
|
|
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
from keras.preprocessing import image
|
|
|
|
|
|
|
7 |
from fastapi import FastAPI, File, UploadFile
|
8 |
from fastapi.responses import JSONResponse
|
9 |
from io import BytesIO
|
10 |
from PIL import Image
|
|
|
11 |
import tensorflow as tf
|
12 |
import logging
|
13 |
from fastapi.middleware.cors import CORSMiddleware
|
14 |
+
from tensorflow.keras.models import load_model
|
15 |
|
16 |
+
# Import deskripsi dan lokasi
|
17 |
+
from description import description
|
18 |
+
from location import location
|
|
|
|
|
|
|
19 |
|
20 |
# Nonaktifkan GPU (jika tidak digunakan)
|
21 |
tf.config.set_visible_devices([], 'GPU')
|
22 |
|
23 |
# Inisialisasi logger
|
24 |
logging.basicConfig(level=logging.INFO)
|
25 |
+
logger = logging.getLogger(_name_)
|
26 |
+
|
27 |
+
# Fungsi memuat model dari file .h5 langsung
|
28 |
+
def load_model_from_file(h5_path):
|
29 |
+
return load_model(h5_path)
|
30 |
|
31 |
+
# Load model
|
32 |
+
model = load_model_from_file("my_model.h5")
|
33 |
|
34 |
+
# Daftar label
|
35 |
labels = [
|
36 |
"Benteng Vredeburg", "Candi Borobudur", "Candi Prambanan", "Gedung Agung Istana Kepresidenan",
|
37 |
"Masjid Gedhe Kauman", "Monumen Serangan 1 Maret", "Museum Gunungapi Merapi",
|
38 |
"Situs Ratu Boko", "Taman Sari", "Tugu Yogyakarta"
|
39 |
]
|
40 |
|
41 |
+
# Fungsi klasifikasi
|
42 |
def classify_image(img):
|
43 |
img = img.resize((224, 224))
|
44 |
img_array = image.img_to_array(img)
|
|
|
78 |
|
79 |
app.add_middleware(
|
80 |
CORSMiddleware,
|
81 |
+
allow_origins=["http://localhost:9000"], # atau sesuaikan
|
82 |
allow_credentials=True,
|
83 |
allow_methods=["*"],
|
84 |
allow_headers=["*"],
|
|
|
112 |
app = gr.mount_gradio_app(app, gradio_app, path="/gradio")
|
113 |
return app
|
114 |
|
115 |
+
# Run server jika dijalankan langsung
|
116 |
+
if _name_ == "_main_":
|
117 |
import uvicorn
|
118 |
app = create_app()
|
119 |
+
uvicorn.run(app, host="127.0.0.1", port=8000)
|