File size: 5,751 Bytes
b49b2c7
79fa906
a5d46e9
553cdd9
 
 
 
b49b2c7
553cdd9
 
b49b2c7
 
 
1449e4a
b49b2c7
 
 
23f0646
 
 
553cdd9
23f0646
 
 
 
553cdd9
23f0646
b49b2c7
 
553cdd9
b49b2c7
 
23f0646
b49b2c7
23f0646
 
01098ca
1449e4a
01098ca
 
 
 
03dba22
 
 
1449e4a
 
03dba22
01098ca
 
1449e4a
23f0646
 
 
 
03dba22
 
 
1449e4a
 
23f0646
03dba22
b49b2c7
 
79fa906
 
01098ca
79fa906
 
 
 
 
 
01098ca
79fa906
01098ca
79fa906
 
 
 
1449e4a
01098ca
79fa906
 
01098ca
 
 
553cdd9
79fa906
 
553cdd9
 
 
 
01098ca
 
b49b2c7
 
 
b6032ed
b49b2c7
 
 
 
 
 
 
 
23f0646
b49b2c7
 
 
 
 
 
 
 
 
 
 
1449e4a
23f0646
b49b2c7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# dreamo_helpers.py
# Módulo de serviço para o DreamO, com gestão de memória e aceitando uma lista dinâmica de referências.

import os
import cv2
import torch
import numpy as np
from PIL import Image
import huggingface_hub
import gc
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from torchvision.transforms.functional import normalize
from dreamo.dreamo_pipeline import DreamOPipeline
from dreamo.utils import img2tensor, tensor2img
from tools import BEN2

class Generator:
    def __init__(self):
        self.cpu_device = torch.device('cpu')
        self.gpu_device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

        print("Carregando modelos DreamO para a CPU...")
        model_root = 'black-forest-labs/FLUX.1-dev'
        self.dreamo_pipeline = DreamOPipeline.from_pretrained(model_root, torch_dtype=torch.bfloat16)
        self.dreamo_pipeline.load_dreamo_model(self.cpu_device, use_turbo=True)
        
        self.bg_rm_model = BEN2.BEN_Base().to(self.cpu_device).eval()
        huggingface_hub.hf_hub_download(repo_id='PramaLLC/BEN2', filename='BEN2_Base.pth', local_dir='models')
        self.bg_rm_model.loadcheckpoints('models/BEN2_Base.pth')
        
        self.face_helper = FaceRestoreHelper(
            upscale_factor=1, face_size=512, crop_ratio=(1, 1),
            det_model='retinaface_resnet50', save_ext='png', device=self.cpu_device,
        )
        print("Modelos DreamO prontos (na CPU).")

    def to_gpu(self):
        if self.gpu_device.type == 'cpu': return
        print("Movendo modelos DreamO para a GPU...")
        self.dreamo_pipeline.to(self.gpu_device)
        self.bg_rm_model.to(self.gpu_device)
        self.face_helper.device = self.gpu_device
        self.dreamo_pipeline.t5_embedding.to(self.gpu_device)
        self.dreamo_pipeline.task_embedding.to(self.gpu_device)
        self.dreamo_pipeline.idx_embedding.to(self.gpu_device)
        if hasattr(self.face_helper, 'face_parse'): self.face_helper.face_parse.to(self.gpu_device)
        if hasattr(self.face_helper, 'face_det'): self.face_helper.face_det.to(self.gpu_device)
        print("Modelos DreamO na GPU.")

    def to_cpu(self):
        if self.gpu_device.type == 'cpu': return
        print("Descarregando modelos DreamO da GPU...")
        self.dreamo_pipeline.to(self.cpu_device)
        self.bg_rm_model.to(self.cpu_device)
        self.face_helper.device = self.cpu_device
        self.dreamo_pipeline.t5_embedding.to(self.cpu_device)
        self.dreamo_pipeline.task_embedding.to(self.cpu_device)
        self.dreamo_pipeline.idx_embedding.to(self.cpu_device)
        if hasattr(self.face_helper, 'face_det'): self.face_helper.face_det.to(self.cpu_device)
        if hasattr(self.face_helper, 'face_parse'): self.face_helper.face_parse.to(self.cpu_device)
        gc.collect()
        if torch.cuda.is_available(): torch.cuda.empty_cache()

    @torch.inference_mode()
    # <<<<< MODIFICAÇÃO PRINCIPAL: Aceita uma lista de dicionários de referência >>>>>
    def generate_image_with_gpu_management(self, reference_items, prompt, width, height):
        ref_conds = []
        
        for idx, item in enumerate(reference_items):
            ref_image_np = item.get('image_np')
            ref_task = item.get('task')
            
            if ref_image_np is not None:
                if ref_task == "id":
                    ref_image = self.get_align_face(ref_image_np)
                elif ref_task != "style":
                    ref_image = self.bg_rm_model.inference(Image.fromarray(ref_image_np))
                else: # Style usa a imagem original
                    ref_image = ref_image_np

                ref_image_tensor = img2tensor(np.array(ref_image), bgr2rgb=False).unsqueeze(0) / 255.0
                ref_image_tensor = (2 * ref_image_tensor - 1.0).to(self.gpu_device, dtype=torch.bfloat16)
                
                # O modelo DreamO espera o índice começando em 1
                ref_conds.append({'img': ref_image_tensor, 'task': ref_task, 'idx': idx + 1})
        
        image = self.dreamo_pipeline(
            prompt=prompt, 
            width=width,
            height=height,
            num_inference_steps=12, 
            guidance_scale=4.5,
            ref_conds=ref_conds, 
            generator=torch.Generator(device="cpu").manual_seed(42)
        ).images[0]
        return image

    @torch.no_grad()
    def get_align_face(self, img):
        # ... (lógica inalterada)
        self.face_helper.clean_all()
        image_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        self.face_helper.read_image(image_bgr)
        self.face_helper.get_face_landmarks_5(only_center_face=True)
        self.face_helper.align_warp_face()
        if len(self.face_helper.cropped_faces) == 0: return None
        align_face = self.face_helper.cropped_faces[0]
        input_tensor = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0
        input_tensor = input_tensor.to(self.gpu_device)
        parsing_out = self.face_helper.face_parse(normalize(input_tensor, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0]
        parsing_out = parsing_out.argmax(dim=1, keepdim=True)
        bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
        bg = sum(parsing_out == i for i in bg_label).bool()
        white_image = torch.ones_like(input_tensor)
        face_features_image = torch.where(bg, white_image, input_tensor)
        return tensor2img(face_features_image, rgb2bgr=False)

# --- Instância Singleton ---
print("Inicializando o Pintor de Cenas (DreamO Helper)...")
hf_token = os.getenv('HF_TOKEN')
if hf_token: huggingface_hub.login(token=hf_token)
dreamo_generator_singleton = Generator()
print("Pintor de Cenas (DreamO Helper) pronto.")