Xlcar / app1.py
Carlexxx's picture
Rename app.py to app1.py
290b174 verified
# --- app.py (O Painel de Controle do Maestro - Versão Final Completa) ---
# By Carlex & Gemini & DreamO
# --- Ato 1: A Convocação da Orquestra (Importações) ---
import gradio as gr
import torch
import os
import yaml
from PIL import Image
import shutil
import gc
import subprocess
import google.generativeai as genai
import numpy as np
import imageio
from pathlib import Path
import huggingface_hub
import json
from inference import create_ltx_video_pipeline, load_image_to_tensor_with_resize_and_crop, calculate_padding, ConditioningItem
from dreamo_helpers import dreamo_generator_singleton
import ltx_video.pipelines.crf_compressor as crf_compressor
# --- Ato 2: A Preparação do Palco (Configurações) ---
config_file_path = "configs/ltxv-13b-0.9.8-distilled.yaml"
with open(config_file_path, "r") as file: PIPELINE_CONFIG_YAML = yaml.safe_load(file)
LTX_REPO = "Lightricks/LTX-Video"
models_dir = "downloaded_models_gradio_cpu_init"
Path(models_dir).mkdir(parents=True, exist_ok=True)
WORKSPACE_DIR = "aduc_workspace"
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
VIDEO_FPS = 30
VIDEO_DURATION_SECONDS = 3
VIDEO_TOTAL_FRAMES = VIDEO_DURATION_SECONDS * VIDEO_FPS
CONVERGENCE_FRAMES = 8
MAX_REFS = 5 # Definimos um máximo de 5 referências para a UI
print("Baixando e criando pipelines LTX na CPU...")
distilled_model_actual_path = huggingface_hub.hf_hub_download(repo_id=LTX_REPO, filename=PIPELINE_CONFIG_YAML["checkpoint_path"], local_dir=models_dir, local_dir_use_symlinks=False)
pipeline_instance = create_ltx_video_pipeline(ckpt_path=distilled_model_actual_path, precision=PIPELINE_CONFIG_YAML["precision"], text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"], sampler=PIPELINE_CONFIG_YAML["sampler"], device='cpu')
print("Modelos LTX prontos (na CPU).")
# --- Ato 3: As Partituras dos Músicos (Funções) ---
def get_static_scenes_storyboard(num_fragments: int, prompt: str, initial_image_path: str, progress=gr.Progress()):
progress(0.5, desc="[Fotógrafo Gemini] Descrevendo as cenas estáticas...")
if not initial_image_path: raise gr.Error("Por favor, forneça uma imagem de referência inicial.")
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
genai.configure(api_key=GEMINI_API_KEY)
prompt_file = "prompts/photographer_prompt.txt"
try:
script_dir = os.path.dirname(os.path.abspath(__file__))
prompt_file_path = os.path.join(script_dir, prompt_file)
with open(prompt_file_path, "r", encoding="utf-8") as f: template = f.read()
except FileNotFoundError: raise gr.Error(f"Arquivo de prompt '{prompt_file}' não encontrado!")
director_prompt = template.format(user_prompt=prompt, num_fragments=int(num_fragments))
model = genai.GenerativeModel('gemini-2.0-flash')
img = Image.open(initial_image_path)
response = model.generate_content([director_prompt, img])
try:
cleaned_response = response.text.strip().replace("```json", "").replace("```", "")
if not cleaned_response: raise ValueError("A resposta do Gemini estava vazia.")
storyboard_data = json.loads(cleaned_response)
return storyboard_data.get("scene_storyboard", [])
except (json.JSONDecodeError, ValueError) as e:
raise gr.Error(f"O Fotógrafo retornou uma resposta inválida. Erro: {e}. Resposta Bruta: '{response.text}'")
def get_motion_storyboard(user_prompt: str, keyframe_image_paths: list, progress=gr.Progress()):
progress(0.5, desc="[Diretor Gemini] Criando o roteiro de movimento...")
if not keyframe_image_paths: raise gr.Error("Nenhuma imagem-chave fornecida para o diretor de cena.")
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
genai.configure(api_key=GEMINI_API_KEY)
prompt_file = "prompts/director_motion_prompt.txt"
try:
script_dir = os.path.dirname(os.path.abspath(__file__))
prompt_file_path = os.path.join(script_dir, prompt_file)
with open(prompt_file_path, "r", encoding="utf-8") as f: template = f.read()
except FileNotFoundError: raise gr.Error(f"Arquivo de prompt '{prompt_file}' não encontrado!")
director_prompt = template.format(user_prompt=user_prompt, num_fragments=len(keyframe_image_paths))
model_contents = [director_prompt]
for img_path in keyframe_image_paths:
img = Image.open(img_path)
model_contents.append(img)
model = genai.GenerativeModel('gemini-2.0-flash')
response = model.generate_content(model_contents)
try:
cleaned_response = response.text.strip().replace("```json", "").replace("```", "")
if not cleaned_response: raise ValueError("A resposta do Gemini estava vazia.")
storyboard_data = json.loads(cleaned_response)
return storyboard_data.get("motion_storyboard", [])
except (json.JSONDecodeError, ValueError) as e:
raise gr.Error(f"O Diretor de Cena retornou uma resposta inválida. Erro: {e}. Resposta Bruta: '{response.text}'")
def run_sequential_keyframe_generation(storyboard, initial_ref_image_path, *reference_args):
if not storyboard: raise gr.Error("Nenhum roteiro para gerar imagens-chave.")
if not initial_ref_image_path: raise gr.Error("A imagem de referência inicial é obrigatória.")
ref_paths = reference_args[:MAX_REFS]
ref_tasks = reference_args[MAX_REFS:]
with Image.open(initial_ref_image_path) as img:
width, height = img.size
width, height = (width // 32) * 32, (height // 32) * 32
keyframe_paths, log_history = [], ""
current_ref_image_path = initial_ref_image_path
try:
dreamo_generator_singleton.to_gpu()
for i, prompt in enumerate(storyboard):
log_history += f"Pintando Cena Sequencial {i+1}/{len(storyboard)}...\n"
yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=keyframe_paths)}
reference_items_for_dreamo = []
reference_items_for_dreamo.append({
'image_np': np.array(Image.open(current_ref_image_path).convert("RGB")),
'task': ref_tasks[0]
})
for j in range(1, MAX_REFS):
if ref_paths[j]:
reference_items_for_dreamo.append({
'image_np': np.array(Image.open(ref_paths[j]).convert("RGB")),
'task': ref_tasks[j]
})
output_path = os.path.join(WORKSPACE_DIR, f"keyframe_image_{i+1}.png")
image = dreamo_generator_singleton.generate_image_with_gpu_management(
reference_items=reference_items_for_dreamo,
prompt=prompt,
width=width,
height=height
)
image.save(output_path)
keyframe_paths.append(output_path)
current_ref_image_path = output_path
log_history += f"Cena {i+1} pintada. A próxima cena usará '{os.path.basename(output_path)}' como referência.\n"
yield {
keyframe_log_output: gr.update(value=log_history),
keyframe_gallery_output: gr.update(value=keyframe_paths),
keyframe_images_state: keyframe_paths,
ref_image_inputs[0]: gr.update(value=current_ref_image_path)
}
finally:
dreamo_generator_singleton.to_cpu()
log_history += "\nPintura sequencial de todas as cenas concluída!"
yield {keyframe_log_output: gr.update(value=log_history)}
def extract_final_frames_video(input_video_path: str, output_video_path: str, num_frames: int):
if not os.path.exists(input_video_path): raise gr.Error(f"Erro Interno: Vídeo de entrada para extração não encontrado: {input_video_path}")
try:
command_probe = f"ffprobe -v error -select_streams v:0 -count_frames -show_entries stream=nb_read_frames -of default=noprint_wrappers=1:nokey=1 \"{input_video_path}\""
result_probe = subprocess.run(command_probe, shell=True, check=True, capture_output=True, text=True)
total_frames = int(result_probe.stdout.strip())
start_frame_index = total_frames - num_frames
if start_frame_index < 0:
print(f"Aviso: O vídeo tem menos de {num_frames} frames. Usando o vídeo inteiro como convergência.")
shutil.copyfile(input_video_path, output_video_path)
return output_video_path
command_extract = f"ffmpeg -y -i \"{input_video_path}\" -vf \"select='gte(n,{start_frame_index})'\" -c:v libx264 -preset ultrafast -an \"{output_video_path}\""
subprocess.run(command_extract, shell=True, check=True, capture_output=True, text=True)
return output_video_path
except (subprocess.CalledProcessError, ValueError) as e:
error_message = f"FFmpeg/FFprobe falhou ao extrair os frames finais: {e}"
if hasattr(e, 'stderr'): error_message += f"\nDetalhes: {e.stderr}"
raise gr.Error(error_message)
def load_conditioning_tensor(media_path: str, height: int, width: int) -> torch.Tensor:
if media_path.lower().endswith(('.png', '.jpg', '.jpeg')):
return load_image_to_tensor_with_resize_and_crop(media_path, height, width)
elif media_path.lower().endswith('.mp4'):
try:
with imageio.get_reader(media_path) as reader:
first_frame = reader.get_data(0)
image = Image.fromarray(first_frame).convert("RGB").resize((width, height))
image = np.array(image)
frame_tensor = torch.from_numpy(image).float()
frame_tensor = crf_compressor.compress(frame_tensor / 255.0) * 255.0
frame_tensor = frame_tensor.permute(2, 0, 1)
frame_tensor = (frame_tensor / 127.5) - 1.0
return frame_tensor.unsqueeze(0).unsqueeze(2)
except Exception as e:
raise gr.Error(f"Falha ao ler o primeiro frame do vídeo de convergência '{media_path}': {e}")
else:
raise gr.Error(f"Formato de arquivo de condicionamento não suportado: {media_path}")
def run_ltx_animation(current_fragment_index, motion_prompt, conditioning_items_data, width, height, seed, cfg, progress=gr.Progress()):
progress(0, desc=f"[Animador LTX] Gerando Cena {current_fragment_index}...")
output_path = os.path.join(WORKSPACE_DIR, f"fragment_{current_fragment_index}.mp4")
target_device = 'cuda' if torch.cuda.is_available() else 'cpu'
try:
pipeline_instance.to(target_device)
conditioning_items = []
for (path, start_frame, strength) in conditioning_items_data:
tensor = load_conditioning_tensor(path, height, width)
conditioning_items.append(ConditioningItem(tensor.to(target_device), start_frame, strength))
n_val = round((float(VIDEO_TOTAL_FRAMES) - 1.0) / 8.0)
actual_num_frames = int(n_val * 8 + 1)
padded_h, padded_w = ((height - 1) // 32 + 1) * 32, ((width - 1) // 32 + 1) * 32
padding_vals = calculate_padding(height, width, padded_h, padded_w)
for cond_item in conditioning_items: cond_item.media_item = torch.nn.functional.pad(cond_item.media_item, padding_vals)
timesteps = PIPELINE_CONFIG_YAML.get("first_pass", {}).get("timesteps")
kwargs = {"prompt": motion_prompt, "negative_prompt": "blurry, distorted, bad quality, artifacts", "height": padded_h, "width": padded_w, "num_frames": actual_num_frames, "frame_rate": VIDEO_FPS, "generator": torch.Generator(device=target_device).manual_seed(int(seed) + current_fragment_index), "output_type": "pt", "guidance_scale": float(cfg), "timesteps": timesteps, "conditioning_items": conditioning_items, "vae_per_channel_normalize": True, "decode_timestep": PIPELINE_CONFIG_YAML["decode_timestep"], "decode_noise_scale": PIPELINE_CONFIG_YAML["decode_noise_scale"], "stochastic_sampling": PIPELINE_CONFIG_YAML["stochastic_sampling"], "image_cond_noise_scale": 0.15, "is_video": True, "mixed_precision": (PIPELINE_CONFIG_YAML["precision"] == "mixed_precision"), "offload_to_cpu": False, "enhance_prompt": False}
result_tensor = pipeline_instance(**kwargs).images
pad_l, pad_r, pad_t, pad_b = padding_vals
slice_h, slice_w = (-pad_b if pad_b > 0 else None), (-pad_r if pad_r > 0 else None)
cropped_tensor = result_tensor[:, :, :VIDEO_TOTAL_FRAMES, pad_t:slice_h, pad_l:slice_w]
video_np = (cropped_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8)
with imageio.get_writer(output_path, fps=VIDEO_FPS, codec='libx264', quality=8) as writer:
for i, frame in enumerate(video_np): progress(i / len(video_np), desc=f"Renderizando frame {i+1}/{len(video_np)}..."); writer.append_data(frame)
return output_path
finally:
pipeline_instance.to('cpu'); gc.collect(); torch.cuda.empty_cache()
def run_full_video_production(prompt_geral, keyframe_image_paths, seed, cfg):
if not keyframe_image_paths: raise gr.Error("Imagens-chave estão faltando.")
log_history = "Iniciando Etapa 3: Geração do Roteiro de Movimento...\n"
yield {video_production_log_output: gr.update(value=log_history)}
motion_storyboard = get_motion_storyboard(prompt_geral, keyframe_image_paths)
if not motion_storyboard or len(motion_storyboard) != len(keyframe_image_paths):
raise gr.Error("Falha ao gerar o roteiro de movimento ou o número de prompts não corresponde ao número de imagens.")
log_history += "Roteiro de movimento gerado com sucesso.\n\nIniciando Etapa 4: Produção dos Vídeos com Convergência Física...\n"
yield {video_production_log_output: gr.update(value=log_history)}
with Image.open(keyframe_image_paths[0]) as img: width, height = img.size
video_fragments = []
num_keyframes = len(keyframe_image_paths)
n_val = round((float(VIDEO_TOTAL_FRAMES) - 1.0) / 8.0)
actual_num_frames = int(n_val * 8 + 1)
end_frame_index = actual_num_frames - 1
previous_media_path = keyframe_image_paths[0]
for i in range(num_keyframes):
current_motion_prompt = motion_storyboard[i]
log_message = f"\n--- Preparando Fragmento {i+1}/{num_keyframes} ---\n"
log_message += f"Motor de partida (convergência): {os.path.basename(previous_media_path)}\n"
log_history += log_message
yield {video_production_log_output: gr.update(value=log_history)}
start_media_path = previous_media_path
if i < num_keyframes - 1:
end_image_path = keyframe_image_paths[i+1]
conditioning_items_data = [(start_media_path, 0, 1.0), (end_image_path, end_frame_index, 1.0)]
log_message = f"Ponto final (alvo): {os.path.basename(end_image_path)}\n"
else:
conditioning_items_data = [(start_media_path, 0, 1.0)]
log_message = "Animação final livre (sem ponto final definido).\n"
log_history += log_message
yield {video_production_log_output: gr.update(value=log_history)}
full_fragment_path = run_ltx_animation(i + 1, current_motion_prompt, conditioning_items_data, width, height, seed, cfg)
video_fragments.append(full_fragment_path)
log_message = f"Fragmento {i+1} concluído: {os.path.basename(full_fragment_path)}\n"
log_history += log_message
yield {
video_production_log_output: gr.update(value=log_history),
fragment_gallery_output: gr.update(value=video_fragments),
fragment_list_state: video_fragments,
final_fragments_display: gr.update(value=video_fragments)
}
if i < num_keyframes - 1:
convergence_video_path = os.path.join(WORKSPACE_DIR, f"convergence_clip_{i+1}.mp4")
log_message = f"Extraindo {CONVERGENCE_FRAMES} frames de convergência para a próxima etapa...\n"
log_history += log_message
yield {video_production_log_output: gr.update(value=log_history)}
extract_final_frames_video(full_fragment_path, convergence_video_path, CONVERGENCE_FRAMES)
previous_media_path = convergence_video_path
log_history += "\nProdução de todas as cenas de vídeo concluída!"
yield {video_production_log_output: gr.update(value=log_history)}
def concatenate_masterpiece(fragment_paths: list, progress=gr.Progress()):
progress(0.5, desc="Montando a obra-prima final...")
list_file_path = os.path.join(WORKSPACE_DIR, "concat_list.txt")
final_output_path = os.path.join(WORKSPACE_DIR, "obra_prima_final.mp4")
with open(list_file_path, "w") as f:
for path in fragment_paths: f.write(f"file '{os.path.abspath(path)}'\n")
command = f"ffmpeg -y -f concat -safe 0 -i {list_file_path} -c copy {final_output_path}"
try:
subprocess.run(command, shell=True, check=True, capture_output=True, text=True)
return final_output_path
except subprocess.CalledProcessError as e:
raise gr.Error(f"FFmpeg falhou ao unir os vídeos: {e.stderr}")
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# LTX Video - Storyboard em Vídeo (ADUC-SDR)\n*By Carlex & Gemini & DreamO*")
scene_storyboard_state = gr.State([])
keyframe_images_state = gr.State([])
fragment_list_state = gr.State([])
prompt_geral_state = gr.State("")
if os.path.exists(WORKSPACE_DIR): shutil.rmtree(WORKSPACE_DIR)
os.makedirs(WORKSPACE_DIR)
with gr.Tabs():
with gr.TabItem("ETAPA 1: O FOTÓGRAFO (Roteiro de Cenas)"):
with gr.Row():
with gr.Column():
num_fragments_input = gr.Slider(2, 10, 4, step=1, label="Número de Cenas")
prompt_input = gr.Textbox(label="Ideia Geral (Prompt)")
image_input = gr.Image(type="filepath", label="Imagem de Referência Principal")
director_button = gr.Button("▶️ 1. Gerar Roteiro de Cenas", variant="primary")
with gr.Column():
storyboard_to_show = gr.JSON(label="Roteiro de Cenas Gerado")
with gr.TabItem("ETAPA 2: O PINTOR (Imagens-Chave)"):
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("### Controles do Pintor (DreamO)\nUse os botões `+` e `-` para adicionar ou remover slots de referência opcionais (até 5 no total).")
visible_references_state = gr.State(1)
ref_image_inputs = []
ref_task_inputs = []
with gr.Blocks() as ref_blocks:
for i in range(MAX_REFS):
is_visible = i < 1
label_prefix = f"Referência {i+1}"
if i == 0:
label_prefix += " (Sequencial)"
default_task = "style"
is_interactive = False
else:
label_prefix += " (Opcional, Fixa)"
default_task = "ip"
is_interactive = True
with gr.Row(visible=is_visible) as ref_row:
img = gr.Image(label=label_prefix, type="filepath", interactive=is_interactive)
task = gr.Dropdown(choices=["ip", "id", "style"], value=default_task, label=f"Tarefa para Ref {i+1}")
ref_image_inputs.append(img)
ref_task_inputs.append(task)
with gr.Row():
add_ref_button = gr.Button("➕ Adicionar Referência")
remove_ref_button = gr.Button("➖ Remover Referência")
photographer_button = gr.Button("▶️ 2. Pintar Imagens-Chave em Sequência", variant="primary")
keyframe_log_output = gr.Textbox(label="Diário de Bordo do Pintor", lines=5, interactive=False)
with gr.Column(scale=1):
keyframe_gallery_output = gr.Gallery(label="Imagens-Chave Pintadas", object_fit="contain", height="auto", type="filepath")
with gr.TabItem("ETAPA 3: PRODUÇÃO (Gerar Vídeos)"):
gr.Markdown("Nesta etapa, o sistema irá primeiro gerar o roteiro de movimento e depois animar os clipes, **usando o final de um clipe para dar partida no próximo**.")
with gr.Row():
with gr.Column():
keyframes_to_render = gr.Gallery(label="Imagens-Chave para Animar", object_fit="contain", height="auto", interactive=False)
animator_button = gr.Button("▶️ 3. Produzir Cenas em Vídeo", variant="primary", interactive=False)
video_production_log_output = gr.Textbox(label="Diário de Bordo da Produção", lines=10, interactive=False)
with gr.Column():
fragment_gallery_output = gr.Gallery(label="Cenas Produzidas (Vídeos)", object_fit="contain", height="auto")
with gr.Row():
seed_number = gr.Number(42, label="Seed")
cfg_slider = gr.Slider(1.0, 10.0, 2.5, step=0.1, label="CFG")
with gr.TabItem("ETAPA 4: PÓS-PRODUÇÃO"):
with gr.Row():
with gr.Column():
editor_button = gr.Button("▶️ 4. Concatenar Vídeo Final", variant="primary")
final_fragments_display = gr.JSON(label="Fragmentos a Concatenar")
with gr.Column():
final_video_output = gr.Video(label="A Obra-Prima Final")
# --- Ato 5: A Regência (Lógica de Conexão dos Botões) ---
def on_director_success(storyboard_list, img_path, prompt_geral):
if not storyboard_list: raise gr.Error("O storyboard está vazio ou em formato inválido.")
return storyboard_list, img_path, prompt_geral, gr.update(value=storyboard_list), gr.update(value=img_path)
director_button.click(
fn=get_static_scenes_storyboard,
inputs=[num_fragments_input, prompt_input, image_input],
outputs=[scene_storyboard_state]
).then(
fn=on_director_success,
inputs=[scene_storyboard_state, image_input, prompt_input],
outputs=[scene_storyboard_state, ref_image_inputs[0], prompt_geral_state, storyboard_to_show, ref_image_inputs[0]]
)
def update_reference_visibility(current_count, action):
if action == "add": new_count = min(MAX_REFS, current_count + 1)
else: new_count = max(1, current_count - 1)
updates = [gr.update(visible=(i < new_count)) for i in range(MAX_REFS)]
return [new_count] + updates
all_ref_rows = [comp.parent for comp in ref_image_inputs]
add_ref_button.click(fn=update_reference_visibility, inputs=[visible_references_state, gr.State("add")], outputs=[visible_references_state] + all_ref_rows)
remove_ref_button.click(fn=update_reference_visibility, inputs=[visible_references_state, gr.State("remove")], outputs=[visible_references_state] + all_ref_rows)
photographer_button.click(
fn=run_sequential_keyframe_generation,
inputs=[scene_storyboard_state, ref_image_inputs[0]] + ref_image_inputs + ref_task_inputs,
outputs=[keyframe_log_output, keyframe_gallery_output, keyframe_images_state, ref_image_inputs[0]]
).then(
lambda paths: {keyframes_to_render: gr.update(value=paths), animator_button: gr.update(interactive=True)},
inputs=[keyframe_images_state],
outputs=[keyframes_to_render, animator_button]
)
animator_button.click(
fn=run_full_video_production,
inputs=[prompt_geral_state, keyframe_images_state, seed_number, cfg_slider],
outputs=[video_production_log_output, fragment_gallery_output, fragment_list_state, final_fragments_display]
)
editor_button.click(
fn=concatenate_masterpiece,
inputs=[fragment_list_state],
outputs=[final_video_output]
)
if __name__ == "__main__":
demo.queue().launch(server_name="0.0.0.0", share=True)