Spaces:
Running
Running
from fastapi import Request | |
from starlette.middleware.base import BaseHTTPMiddleware | |
from app.config.config import settings | |
from app.log.logger import get_main_logger | |
import re | |
logger = get_main_logger() | |
class SmartRoutingMiddleware(BaseHTTPMiddleware): | |
def __init__(self, app): | |
super().__init__(app) | |
# 简化的路由规则 - 直接根据检测结果路由 | |
pass | |
async def dispatch(self, request: Request, call_next): | |
if not settings.URL_NORMALIZATION_ENABLED: | |
return await call_next(request) | |
logger.debug(f"request: {request}") | |
original_path = str(request.url.path) | |
method = request.method | |
# 尝试修复URL | |
fixed_path, fix_info = self.fix_request_url(original_path, method, request) | |
if fixed_path != original_path: | |
logger.info(f"URL fixed: {method} {original_path} → {fixed_path}") | |
if fix_info: | |
logger.debug(f"Fix details: {fix_info}") | |
# 重写请求路径 | |
request.scope["path"] = fixed_path | |
request.scope["raw_path"] = fixed_path.encode() | |
return await call_next(request) | |
def fix_request_url(self, path: str, method: str, request: Request) -> tuple: | |
"""简化的URL修复逻辑""" | |
# 首先检查是否已经是正确的格式,如果是则不处理 | |
if self.is_already_correct_format(path): | |
return path, None | |
# 1. 最高优先级:包含generateContent → Gemini格式 | |
if "generatecontent" in path.lower() or "v1beta/models" in path.lower(): | |
return self.fix_gemini_by_operation(path, method, request) | |
# 2. 第二优先级:包含/openai/ → OpenAI格式 | |
if "/openai/" in path.lower(): | |
return self.fix_openai_by_operation(path, method) | |
# 3. 第三优先级:包含/v1/ → v1格式 | |
if "/v1/" in path.lower(): | |
return self.fix_v1_by_operation(path, method) | |
# 4. 第四优先级:包含/chat/completions → chat功能 | |
if "/chat/completions" in path.lower(): | |
return "/v1/chat/completions", {"type": "v1_chat"} | |
# 5. 默认:原样传递 | |
return path, None | |
def is_already_correct_format(self, path: str) -> bool: | |
"""检查是否已经是正确的API格式""" | |
# 检查是否已经是正确的端点格式 | |
correct_patterns = [ | |
r"^/v1beta/models/[^/:]+:(generate|streamGenerate)Content$", # Gemini原生 | |
r"^/gemini/v1beta/models/[^/:]+:(generate|streamGenerate)Content$", # Gemini带前缀 | |
r"^/v1beta/models$", # Gemini模型列表 | |
r"^/gemini/v1beta/models$", # Gemini带前缀的模型列表 | |
r"^/v1/(chat/completions|models|embeddings|images/generations|audio/speech)$", # v1格式 | |
r"^/openai/v1/(chat/completions|models|embeddings|images/generations|audio/speech)$", # OpenAI格式 | |
r"^/hf/v1/(chat/completions|models|embeddings|images/generations|audio/speech)$", # HF格式 | |
r"^/vertex-express/v1beta/models/[^/:]+:(generate|streamGenerate)Content$", # Vertex Express Gemini格式 | |
r"^/vertex-express/v1beta/models$", # Vertex Express模型列表 | |
r"^/vertex-express/v1/(chat/completions|models|embeddings|images/generations)$", # Vertex Express OpenAI格式 | |
] | |
for pattern in correct_patterns: | |
if re.match(pattern, path): | |
return True | |
return False | |
def fix_gemini_by_operation( | |
self, path: str, method: str, request: Request | |
) -> tuple: | |
"""根据Gemini操作修复,考虑端点偏好""" | |
if method == "GET": | |
return "/v1beta/models", { | |
"role": "gemini_models", | |
} | |
# 提取模型名称 | |
try: | |
model_name = self.extract_model_name(path, request) | |
except ValueError: | |
# 无法提取模型名称,返回原路径不做处理 | |
return path, None | |
# 检测是否为流式请求 | |
is_stream = self.detect_stream_request(path, request) | |
# 检查是否有vertex-express偏好 | |
if "/vertex-express/" in path.lower(): | |
if is_stream: | |
target_url = ( | |
f"/vertex-express/v1beta/models/{model_name}:streamGenerateContent" | |
) | |
else: | |
target_url = ( | |
f"/vertex-express/v1beta/models/{model_name}:generateContent" | |
) | |
fix_info = { | |
"rule": ( | |
"vertex_express_generate" | |
if not is_stream | |
else "vertex_express_stream" | |
), | |
"preference": "vertex_express_format", | |
"is_stream": is_stream, | |
"model": model_name, | |
} | |
else: | |
# 标准Gemini端点 | |
if is_stream: | |
target_url = f"/v1beta/models/{model_name}:streamGenerateContent" | |
else: | |
target_url = f"/v1beta/models/{model_name}:generateContent" | |
fix_info = { | |
"rule": "gemini_generate" if not is_stream else "gemini_stream", | |
"preference": "gemini_format", | |
"is_stream": is_stream, | |
"model": model_name, | |
} | |
return target_url, fix_info | |
def fix_openai_by_operation(self, path: str, method: str) -> tuple: | |
"""根据操作类型修复OpenAI格式""" | |
if method == "POST": | |
if "chat" in path.lower() or "completion" in path.lower(): | |
return "/openai/v1/chat/completions", {"type": "openai_chat"} | |
elif "embedding" in path.lower(): | |
return "/openai/v1/embeddings", {"type": "openai_embeddings"} | |
elif "image" in path.lower(): | |
return "/openai/v1/images/generations", {"type": "openai_images"} | |
elif "audio" in path.lower(): | |
return "/openai/v1/audio/speech", {"type": "openai_audio"} | |
elif method == "GET": | |
if "model" in path.lower(): | |
return "/openai/v1/models", {"type": "openai_models"} | |
return path, None | |
def fix_v1_by_operation(self, path: str, method: str) -> tuple: | |
"""根据操作类型修复v1格式""" | |
if method == "POST": | |
if "chat" in path.lower() or "completion" in path.lower(): | |
return "/v1/chat/completions", {"type": "v1_chat"} | |
elif "embedding" in path.lower(): | |
return "/v1/embeddings", {"type": "v1_embeddings"} | |
elif "image" in path.lower(): | |
return "/v1/images/generations", {"type": "v1_images"} | |
elif "audio" in path.lower(): | |
return "/v1/audio/speech", {"type": "v1_audio"} | |
elif method == "GET": | |
if "model" in path.lower(): | |
return "/v1/models", {"type": "v1_models"} | |
return path, None | |
def detect_stream_request(self, path: str, request: Request) -> bool: | |
"""检测是否为流式请求""" | |
# 1. 路径中包含stream关键词 | |
if "stream" in path.lower(): | |
return True | |
# 2. 查询参数 | |
if request.query_params.get("stream") == "true": | |
return True | |
return False | |
def extract_model_name(self, path: str, request: Request) -> str: | |
"""从请求中提取模型名称,用于构建Gemini API URL""" | |
# 1. 从请求体中提取 | |
try: | |
if hasattr(request, "_body") and request._body: | |
import json | |
body = json.loads(request._body.decode()) | |
if "model" in body and body["model"]: | |
return body["model"] | |
except Exception: | |
pass | |
# 2. 从查询参数中提取 | |
model_param = request.query_params.get("model") | |
if model_param: | |
return model_param | |
# 3. 从路径中提取(用于已包含模型名称的路径) | |
match = re.search(r"/models/([^/:]+)", path, re.IGNORECASE) | |
if match: | |
return match.group(1) | |
# 4. 如果无法提取模型名称,抛出异常 | |
raise ValueError("Unable to extract model name from request") | |