GeminiBalance / app /service /embedding /embedding_service.py
CatPtain's picture
Upload 77 files
76b9762 verified
import datetime
import time
import re
from typing import List, Union
import openai
from openai import APIStatusError
from openai.types import CreateEmbeddingResponse
from app.config.config import settings
from app.log.logger import get_embeddings_logger
from app.database.services import add_error_log, add_request_log
logger = get_embeddings_logger()
class EmbeddingService:
async def create_embedding(
self, input_text: Union[str, List[str]], model: str, api_key: str
) -> CreateEmbeddingResponse:
"""Create embeddings using OpenAI API with database logging"""
start_time = time.perf_counter()
request_datetime = datetime.datetime.now()
is_success = False
status_code = None
response = None
error_log_msg = ""
if isinstance(input_text, list):
request_msg_log = {"input_truncated": [str(item)[:100] + "..." if len(str(item)) > 100 else str(item) for item in input_text[:5]]}
if len(input_text) > 5:
request_msg_log["input_truncated"].append("...")
else:
request_msg_log = {"input_truncated": input_text[:1000] + "..." if len(input_text) > 1000 else input_text}
try:
client = openai.OpenAI(api_key=api_key, base_url=settings.BASE_URL)
response = client.embeddings.create(input=input_text, model=model)
is_success = True
status_code = 200
return response
except APIStatusError as e:
is_success = False
status_code = e.status_code
error_log_msg = f"OpenAI API error: {e}"
logger.error(f"Error creating embedding (APIStatusError): {error_log_msg}")
raise e
except Exception as e:
is_success = False
error_log_msg = f"Generic error: {e}"
logger.error(f"Error creating embedding (Exception): {error_log_msg}")
match = re.search(r"status code (\d+)", str(e))
if match:
status_code = int(match.group(1))
else:
status_code = 500
raise e
finally:
end_time = time.perf_counter()
latency_ms = int((end_time - start_time) * 1000)
if not is_success:
await add_error_log(
gemini_key=api_key,
model_name=model,
error_type="openai-embedding",
error_log=error_log_msg,
error_code=status_code,
request_msg=request_msg_log
)
await add_request_log(
model_name=model,
api_key=api_key,
is_success=is_success,
status_code=status_code,
latency_ms=latency_ms,
request_time=request_datetime
)