Spaces:
Running
Running
File size: 44,228 Bytes
8ca6ff4 430248b aef38cb 430248b 0d6b0a2 430248b 40f4896 aef38cb 430248b 7c7bb88 aef38cb 430248b aef38cb 430248b 4918931 430248b 4918931 430248b 4918931 430248b 4918931 430248b 4918931 430248b 4918931 aef38cb 4918931 aef38cb 40f4896 897b2d4 40f4896 897b2d4 40f4896 897b2d4 40f4896 897b2d4 40f4896 897b2d4 40f4896 897b2d4 aef38cb 430248b aef38cb 430248b aef38cb 430248b 8ca6ff4 430248b 4918931 aef38cb 430248b aef38cb 430248b 4918931 430248b aef38cb 430248b aef38cb 4918931 aef38cb 41e130d aef38cb 430248b aef38cb 430248b aef38cb 41e130d 4918931 41e130d 4918931 41e130d 897b2d4 4918931 41e130d 4918931 41e130d 897b2d4 41e130d 4918931 41e130d 4918931 41e130d 897b2d4 41e130d 897b2d4 4918931 41e130d 8ca6ff4 897b2d4 4918931 41e130d 897b2d4 daa408f 897b2d4 daa408f 897b2d4 daa408f 897b2d4 daa408f 897b2d4 daa408f 8ca6ff4 41e130d 897b2d4 41e130d 897b2d4 41e130d 897b2d4 41e130d aef38cb 40f4896 4532a3c 40f4896 4532a3c daa408f 4532a3c daa408f 4532a3c 40f4896 f51b769 4532a3c 40f4896 41e130d 897b2d4 40f4896 897b2d4 41e130d 4532a3c 897b2d4 4532a3c 41e130d 4532a3c 897b2d4 4532a3c 897b2d4 4532a3c 897b2d4 daa408f 4532a3c 897b2d4 daa408f 897b2d4 daa408f 897b2d4 daa408f 897b2d4 daa408f 897b2d4 daa408f 897b2d4 daa408f 4918931 897b2d4 daa408f 8034ac9 897b2d4 4532a3c 897b2d4 daa408f 897b2d4 daa408f 4532a3c daa408f 4532a3c daa408f 4532a3c 897b2d4 daa408f 897b2d4 daa408f 897b2d4 daa408f 897b2d4 40f4896 aef38cb 4532a3c daa408f 4532a3c daa408f 4532a3c 40f4896 41e130d 40f4896 41e130d 40f4896 4532a3c 40f4896 4532a3c daa408f 40f4896 daa408f 40f4896 4532a3c 41e130d 40f4896 4532a3c 40f4896 daa408f 40f4896 4532a3c 40f4896 daa408f 40f4896 4532a3c 897b2d4 40f4896 897b2d4 40f4896 897b2d4 40f4896 897b2d4 40f4896 897b2d4 4918931 40f4896 41e130d 40f4896 41e130d 897b2d4 40f4896 897b2d4 40f4896 897b2d4 40f4896 897b2d4 40f4896 897b2d4 40f4896 897b2d4 40f4896 897b2d4 40f4896 897b2d4 40f4896 41e130d f51b769 4532a3c 41e130d 31ceae8 aef38cb 4918931 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 |
# app.py
import os
import gradio as gr
from PIL import Image
import torch
import numpy as np
import cv2
from transformers import (
CLIPProcessor, CLIPModel,
AutoProcessor
)
import time
# βββββββββββββββββββββββββββββ
# CONFIG: set your HF token here or via env var HF_TOKEN
HF_TOKEN = os.getenv("HF_TOKEN")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 1. CLIP for breed, age, basic health
clip_model = CLIPModel.from_pretrained(
"openai/clip-vit-base-patch16",
token=HF_TOKEN
).to(device)
clip_processor = CLIPProcessor.from_pretrained(
"openai/clip-vit-base-patch16",
token=HF_TOKEN
)
# 2. Alternative medical analysis model (public, no gating issues)
try:
medical_processor = AutoProcessor.from_pretrained(
"microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224",
token=HF_TOKEN
)
medical_model = CLIPModel.from_pretrained(
"microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224",
token=HF_TOKEN
).to(device)
MEDICAL_MODEL_AVAILABLE = True
except:
medical_processor = clip_processor
medical_model = clip_model
MEDICAL_MODEL_AVAILABLE = False
# 3. Stanford Dogs & lifespans (expanded list)
STANFORD_BREEDS = [
"afghan hound", "african hunting dog", "airedale", "american staffordshire terrier",
"appenzeller", "australian terrier", "basenji", "basset", "beagle",
"bedlington terrier", "bernese mountain dog", "black-and-tan coonhound",
"blenheim spaniel", "bloodhound", "bluetick", "border collie", "border terrier",
"borzoi", "boston bull", "bouvier des flandres", "boxer", "brabancon griffon",
"briard", "brittany spaniel", "bull mastiff", "cairn", "cardigan",
"chesapeake bay retriever", "chihuahua", "chow", "clumber", "cocker spaniel",
"collie", "curly-coated retriever", "dandie dinmont", "dhole", "dingo",
"doberman", "english foxhound", "english setter", "english springer",
"entlebucher", "eskimo dog", "flat-coated retriever", "french bulldog",
"german shepherd", "german short-haired pointer", "giant schnauzer",
"golden retriever", "gordon setter", "great dane", "great pyrenees",
"greater swiss mountain dog", "groenendael", "ibizan hound", "irish setter",
"irish terrier", "irish water spaniel", "irish wolfhound", "italian greyhound",
"japanese spaniel", "keeshond", "kelpie", "kerry blue terrier", "komondor",
"kuvasz", "labrador retriever", "lakeland terrier", "leonberg", "lhasa",
"malamute", "malinois", "maltese dog", "mexican hairless", "miniature pinscher",
"miniature poodle", "miniature schnauzer", "newfoundland", "norfolk terrier",
"norwegian elkhound", "norwich terrier", "old english sheepdog", "otterhound",
"papillon", "pekinese", "pembroke", "pomeranian", "pug", "redbone",
"rhodesian ridgeback", "rottweiler", "saint bernard", "saluki", "samoyed",
"schipperke", "scotch terrier", "scottish deerhound", "sealyham terrier",
"shetland sheepdog", "shih tzu", "siberian husky", "silky terrier",
"soft-coated wheaten terrier", "staffordshire bullterrier", "standard poodle",
"standard schnauzer", "sussex spaniel", "tibetan mastiff", "tibetan terrier",
"toy poodle", "toy terrier", "vizsla", "walker hound", "weimaraner",
"welsh springer spaniel", "west highland white terrier", "whippet",
"wire-haired fox terrier", "yorkshire terrier"
]
BREED_LIFESPAN = {
"afghan hound": 11.1, "african hunting dog": 10.5, "airedale": 11.5,
"american staffordshire terrier": 12.5, "appenzeller": 13.0, "australian terrier": 13.5,
"basenji": 12.1, "basset": 12.5, "beagle": 12.5, "bedlington terrier": 13.7,
"bernese mountain dog": 10.1, "black-and-tan coonhound": 10.8, "blenheim spaniel": 13.3,
"bloodhound": 9.3, "bluetick": 11.0, "border collie": 13.1, "border terrier": 14.2,
"borzoi": 12.0, "boston bull": 11.8, "bouvier des flandres": 11.3, "boxer": 11.3,
"brabancon griffon": 13.0, "briard": 12.6, "brittany spaniel": 13.5,
"bull mastiff": 10.2, "cairn": 14.0, "cardigan": 13.2, "chesapeake bay retriever": 11.6,
"chihuahua": 11.8, "chow": 12.1, "clumber": 12.3, "cocker spaniel": 13.3,
"collie": 13.3, "curly-coated retriever": 12.2, "dandie dinmont": 12.8,
"dhole": 10.0, "dingo": 10.0, "doberman": 11.2, "english foxhound": 13.0,
"english setter": 13.1, "english springer": 13.5, "entlebucher": 13.0,
"eskimo dog": 11.3, "flat-coated retriever": 11.7, "french bulldog": 9.8,
"german shepherd": 11.3, "german short-haired pointer": 13.4, "giant schnauzer": 12.1,
"golden retriever": 13.2, "gordon setter": 12.4, "great dane": 10.6,
"great pyrenees": 10.9, "greater swiss mountain dog": 10.9, "groenendael": 12.0,
"ibizan hound": 13.3, "irish setter": 12.9, "irish terrier": 13.5,
"irish water spaniel": 10.8, "irish wolfhound": 9.9, "italian greyhound": 14.0,
"japanese spaniel": 13.3, "keeshond": 12.3, "kelpie": 12.0, "kerry blue terrier": 12.4,
"komondor": 10.5, "kuvasz": 10.5, "labrador retriever": 13.1, "lakeland terrier": 14.2,
"leonberg": 10.0, "lhasa": 14.0, "malamute": 11.3, "malinois": 12.0,
"maltese dog": 13.1, "mexican hairless": 13.0, "miniature pinscher": 13.7,
"miniature poodle": 14.0, "miniature schnauzer": 13.3, "newfoundland": 11.0,
"norfolk terrier": 13.5, "norwegian elkhound": 13.0, "norwich terrier": 14.0,
"old english sheepdog": 12.1, "otterhound": 12.0, "papillon": 14.5,
"pekinese": 13.3, "pembroke": 13.2, "pomeranian": 12.2, "pug": 11.6,
"redbone": 12.0, "rhodesian ridgeback": 12.0, "rottweiler": 10.6,
"saint bernard": 9.3, "saluki": 13.3, "samoyed": 13.1, "schipperke": 14.2,
"scotch terrier": 12.7, "scottish deerhound": 10.5, "sealyham terrier": 13.1,
"shetland sheepdog": 13.4, "shih tzu": 12.8, "siberian husky": 11.9,
"silky terrier": 13.3, "soft-coated wheaten terrier": 13.7, "staffordshire bullterrier": 12.0,
"standard poodle": 14.0, "standard schnauzer": 13.0, "sussex spaniel": 13.5,
"tibetan mastiff": 13.3, "tibetan terrier": 13.8, "toy poodle": 14.0,
"toy terrier": 13.0, "vizsla": 13.5, "walker hound": 12.0, "weimaraner": 12.8,
"welsh springer spaniel": 14.0, "west highland white terrier": 13.4, "whippet": 13.4,
"wire-haired fox terrier": 13.5, "yorkshire terrier": 13.3
}
# 4. VetMetrica HRQOL Framework with dropdown options
HRQOL_QUESTIONNAIRE = {
"vitality": {
"title": "π Vitality & Energy Assessment",
"description": "Evaluate your dog's energy levels and enthusiasm for activities",
"questions": [
{
"id": "vitality_energy",
"text": "How would you rate your dog's energy level over the past week?",
"options": [
"Excellent - Very energetic, eager for activities",
"Very Good - Generally energetic with occasional rest",
"Good - Moderate energy, participates willingly",
"Fair - Lower energy, needs encouragement",
"Poor - Very low energy, reluctant to participate"
]
},
{
"id": "vitality_play",
"text": "How often does your dog seek out play or interaction?",
"options": [
"Always seeks play/interaction",
"Often seeks play/interaction",
"Sometimes seeks play/interaction",
"Rarely seeks play/interaction",
"Never seeks play/interaction"
]
},
{
"id": "vitality_response",
"text": "How quickly does your dog respond to exciting stimuli (treats, walks, visitors)?",
"options": [
"Immediate enthusiastic response",
"Quick positive response",
"Moderate response time",
"Slow or delayed response",
"No response or negative reaction"
]
}
],
"weight": 0.25
},
"comfort": {
"title": "π Comfort & Pain Management",
"description": "Assess signs of discomfort, pain, or mobility issues",
"questions": [
{
"id": "comfort_activities",
"text": "How comfortable does your dog appear during normal activities?",
"options": [
"Completely comfortable during all activities",
"Mostly comfortable with minor adjustments",
"Some discomfort during certain activities",
"Frequently uncomfortable, avoids some activities",
"Severe discomfort, avoids most activities"
]
},
{
"id": "comfort_pain_frequency",
"text": "How often do you notice signs of pain or discomfort?",
"options": [
"Never shows pain signs",
"Rarely shows pain signs (< 1 day/week)",
"Sometimes shows pain signs (2-3 days/week)",
"Often shows pain signs (4-5 days/week)",
"Always shows pain signs (daily)"
]
},
{
"id": "comfort_impact",
"text": "How does your dog's comfort level affect daily activities?",
"options": [
"No impact on daily activities",
"Minimal impact on daily activities",
"Moderate impact, some activities modified",
"Significant impact, many activities avoided",
"Severe impact, most activities impossible"
]
}
],
"weight": 0.25
},
"emotional_wellbeing": {
"title": "π Emotional Wellbeing",
"description": "Evaluate mood, anxiety levels, and social engagement",
"questions": [
{
"id": "emotion_mood",
"text": "How would you describe your dog's overall mood?",
"options": [
"Very positive - happy, content, enthusiastic",
"Mostly positive - generally cheerful",
"Neutral - neither particularly happy nor sad",
"Mostly negative - seems subdued or withdrawn",
"Very negative - appears depressed or distressed"
]
},
{
"id": "emotion_anxiety",
"text": "How often does your dog show signs of anxiety or stress?",
"options": [
"Never shows anxiety/stress",
"Rarely shows anxiety/stress",
"Sometimes shows anxiety/stress",
"Often shows anxiety/stress",
"Constantly shows anxiety/stress"
]
},
{
"id": "emotion_engagement",
"text": "How engaged is your dog with family activities?",
"options": [
"Highly engaged, initiates family interactions",
"Well engaged, participates enthusiastically",
"Moderately engaged, participates when invited",
"Minimally engaged, needs encouragement",
"Not engaged, avoids family activities"
]
}
],
"weight": 0.25
},
"alertness": {
"title": "π§ Alertness & Cognition",
"description": "Assess cognitive function, awareness, and responsiveness",
"questions": [
{
"id": "alert_awareness",
"text": "How alert and aware does your dog seem?",
"options": [
"Highly alert, notices everything immediately",
"Alert, notices most things quickly",
"Moderately alert, notices things with some delay",
"Slightly alert, slow to notice surroundings",
"Not alert, seems confused or disoriented"
]
},
{
"id": "alert_commands",
"text": "How well does your dog respond to commands or their name?",
"options": [
"Responds immediately to name/commands",
"Usually responds quickly to name/commands",
"Sometimes responds, may need repetition",
"Often doesn't respond, needs multiple attempts",
"Rarely or never responds to name/commands"
]
},
{
"id": "alert_focus",
"text": "How focused is your dog during training or play?",
"options": [
"Highly focused, maintains attention easily",
"Good focus, occasional distraction",
"Moderate focus, some difficulty concentrating",
"Poor focus, easily distracted",
"No focus, cannot maintain attention"
]
}
],
"weight": 0.25
}
}
def predict_biological_age(img: Image.Image, breed: str) -> int:
avg = BREED_LIFESPAN.get(breed.lower(), 12)
prompts = [f"a {age}-year-old {breed}" for age in range(1, int(avg*2)+1)]
inputs = clip_processor(text=prompts, images=img, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
probs = clip_model(**inputs).logits_per_image.softmax(1)[0].cpu().numpy()
return int(np.argmax(probs)+1)
def analyze_medical_image(img: Image.Image):
health_conditions = [
"healthy normal dog",
"dog with visible health issues",
"dog showing signs of illness",
"dog with poor body condition",
"dog with excellent health"
]
if MEDICAL_MODEL_AVAILABLE:
inputs = medical_processor(text=health_conditions, images=img, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
logits = medical_model(**inputs).logits_per_image.softmax(-1)[0].cpu().numpy()
else:
inputs = clip_processor(text=health_conditions, images=img, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
logits = clip_model(**inputs).logits_per_image.softmax(-1)[0].cpu().numpy()
idx = int(np.argmax(logits))
label = health_conditions[idx]
conf = float(logits[idx])
return label, conf
def classify_breed_and_health(img: Image.Image, override=None):
inp = clip_processor(images=img, return_tensors="pt").to(device)
with torch.no_grad():
feats = clip_model.get_image_features(**inp)
text_prompts = [f"a photo of a {b}" for b in STANFORD_BREEDS]
ti = clip_processor(text=text_prompts, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
tf = clip_model.get_text_features(**ti)
sims = (feats @ tf.T).softmax(-1)[0].cpu().numpy()
idx = int(np.argmax(sims))
breed = override or STANFORD_BREEDS[idx]
breed_conf = float(sims[idx])
aspects = {
"Coat Quality": ("shiny healthy coat","dull patchy fur"),
"Eye Clarity": ("bright clear eyes","cloudy milky eyes"),
"Body Condition": ("ideal muscle tone","visible ribs or bones"),
"Dental Health": ("clean white teeth","yellow stained teeth")
}
health = {}
for name,(p,n) in aspects.items():
ti = clip_processor(text=[p,n], return_tensors="pt", padding=True).to(device)
with torch.no_grad():
tf2 = clip_model.get_text_features(**ti)
sim2 = (feats @ tf2.T).softmax(-1)[0].cpu().numpy()
choice = p if sim2[0]>sim2[1] else n
health[name] = {"assessment":choice,"confidence":float(max(sim2))}
return breed, breed_conf, health
def analyze_video_gait(video_path):
if not video_path:
return None
try:
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS) or 24
total = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if total == 0:
cap.release()
return None
indices = np.linspace(0, total-1, min(15, total), dtype=int)
health_scores = []
movement_scores = []
vitality_scores = []
for i in indices:
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
ret, frame = cap.read()
if not ret:
continue
img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
# Health assessment
_, health_conf = analyze_medical_image(img)
health_scores.append(health_conf)
# Movement assessment
movement_prompts = ["dog moving normally", "dog limping or showing pain", "dog moving stiffly"]
inputs = clip_processor(text=movement_prompts, images=img, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
movement_logits = clip_model(**inputs).logits_per_image.softmax(-1)[0].cpu().numpy()
movement_scores.append(float(movement_logits[0]))
# Vitality assessment
vitality_prompts = ["energetic active dog", "lethargic tired dog", "alert playful dog"]
inputs = clip_processor(text=vitality_prompts, images=img, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
vitality_logits = clip_model(**inputs).logits_per_image.softmax(-1)[0].cpu().numpy()
vitality_scores.append(float(vitality_logits[0] + vitality_logits[2]))
cap.release()
if not health_scores:
return None
return {
"duration_sec": round(total/fps, 1),
"mobility_score": float(np.mean(movement_scores)) * 100,
"comfort_score": float(np.mean(health_scores)) * 100,
"vitality_score": float(np.mean(vitality_scores)) * 100,
"frames_analyzed": len(health_scores),
"mobility_assessment": "Normal gait pattern" if np.mean(movement_scores) > 0.6 else "Mobility concerns detected",
"comfort_assessment": "No obvious discomfort" if np.mean(health_scores) > 0.7 else "Possible discomfort signs",
"vitality_assessment": "Good energy level" if np.mean(vitality_scores) > 0.6 else "Low energy observed"
}
except Exception as e:
return None
def score_from_response(response, score_mapping):
"""Extract numeric score from text response"""
if not response:
return 50
for key, value in score_mapping.items():
if key.lower() in response.lower():
return value
return 50
def calculate_hrqol_scores(hrqol_responses):
"""Convert VetMetrica-style responses to 0-100 domain scores"""
score_mapping = {
"excellent": 100, "very good": 80, "good": 60, "fair": 40, "poor": 20,
"always": 100, "often": 80, "sometimes": 60, "rarely": 40, "never": 20,
"immediate": 100, "quick": 80, "moderate": 60, "slow": 40, "no response": 20,
"completely": 100, "mostly": 80, "some": 60, "frequently": 40, "severe": 20,
"very positive": 100, "mostly positive": 80, "neutral": 60, "mostly negative": 40, "very negative": 20,
"highly": 100, "well": 80, "moderately": 60, "minimally": 40, "not": 20
}
domain_scores = {}
# Vitality Domain
vitality_scores = [
score_from_response(hrqol_responses.get("vitality_energy", ""), score_mapping),
score_from_response(hrqol_responses.get("vitality_play", ""), score_mapping),
score_from_response(hrqol_responses.get("vitality_response", ""), score_mapping)
]
domain_scores["vitality"] = np.mean(vitality_scores)
# Comfort Domain (invert pain frequency)
comfort_scores = [
score_from_response(hrqol_responses.get("comfort_activities", ""), score_mapping),
100 - score_from_response(hrqol_responses.get("comfort_pain_frequency", ""), score_mapping),
score_from_response(hrqol_responses.get("comfort_impact", ""), score_mapping)
]
domain_scores["comfort"] = max(0, np.mean(comfort_scores))
# Emotional Wellbeing Domain (invert anxiety)
emotion_scores = [
score_from_response(hrqol_responses.get("emotion_mood", ""), score_mapping),
100 - score_from_response(hrqol_responses.get("emotion_anxiety", ""), score_mapping),
score_from_response(hrqol_responses.get("emotion_engagement", ""), score_mapping)
]
domain_scores["emotional_wellbeing"] = max(0, np.mean(emotion_scores))
# Alertness Domain
alertness_scores = [
score_from_response(hrqol_responses.get("alert_awareness", ""), score_mapping),
score_from_response(hrqol_responses.get("alert_commands", ""), score_mapping),
score_from_response(hrqol_responses.get("alert_focus", ""), score_mapping)
]
domain_scores["alertness"] = np.mean(alertness_scores)
return domain_scores
def get_score_color(score):
"""Return background and text color based on score for better visibility"""
if score >= 80:
return {"bg": "#4CAF50", "text": "#FFFFFF"} # Green background, white text
elif score >= 60:
return {"bg": "#FFC107", "text": "#000000"} # Yellow background, black text
elif score >= 40:
return {"bg": "#FF9800", "text": "#FFFFFF"} # Orange background, white text
else:
return {"bg": "#F44336", "text": "#FFFFFF"} # Red background, white text
def get_healthspan_grade(score):
if score >= 85:
return "Excellent (A+)"
elif score >= 75:
return "Very Good (A)"
elif score >= 65:
return "Good (B)"
elif score >= 55:
return "Fair (C)"
elif score >= 45:
return "Poor (D)"
else:
return "Critical (F)"
def show_loading():
"""Display loading animation"""
return """
<div style="text-align: center; padding: 40px;">
<div style="display: inline-block; width: 40px; height: 40px; border: 4px solid #f3f3f3; border-top: 4px solid #667eea; border-radius: 50%; animation: spin 1s linear infinite;"></div>
<style>
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
</style>
<h3 style="color: #667eea; margin-top: 20px;">π¬ Analyzing Your Dog's Health...</h3>
<p style="color: #666;">Please wait while we process the image/video and questionnaire data.</p>
<div style="background: #f0f0f0; border-radius: 20px; padding: 10px; margin: 20px auto; width: 300px;">
<div style="background: linear-gradient(90deg, #667eea, #764ba2); height: 6px; border-radius: 10px; width: 0%; animation: progress 3s ease-in-out infinite;"></div>
</div>
<style>
@keyframes progress {
0% { width: 0%; }
50% { width: 80%; }
100% { width: 100%; }
}
</style>
</div>
"""
def comprehensive_healthspan_analysis(input_type, image_input, video_input, breed, age, *hrqol_responses):
"""Combine image/video analysis with HRQOL assessment based on input type"""
# Show loading first
yield show_loading()
# Simulate processing time
time.sleep(2)
# Determine which input to use based on dropdown selection
if input_type == "Image Analysis":
selected_media = image_input
media_type = "image"
elif input_type == "Video Analysis":
selected_media = video_input
media_type = "video"
else:
yield "β **Error**: Please select an input type."
return
if selected_media is None:
yield f"β **Error**: Please provide a {media_type} for analysis."
return
# Check if questionnaire is completed
if not hrqol_responses or all(not r for r in hrqol_responses):
yield "β **Error**: Please complete the HRQOL questionnaire before analysis."
return
# Build HRQOL responses dictionary
response_keys = []
for domain_key, domain_data in HRQOL_QUESTIONNAIRE.items():
for question in domain_data["questions"]:
response_keys.append(question["id"])
hrqol_dict = {key: hrqol_responses[i] if i < len(hrqol_responses) else ""
for i, key in enumerate(response_keys)}
# Calculate HRQOL scores
hrqol_scores = calculate_hrqol_scores(hrqol_dict)
# Initialize analysis variables
video_features = {}
breed_info = None
bio_age = None
health_aspects = {}
# Perform analysis based on media type
if media_type == "image":
try:
detected_breed, breed_conf, health_aspects = classify_breed_and_health(selected_media, breed)
bio_age = predict_biological_age(selected_media, detected_breed)
breed_info = {
"breed": detected_breed,
"confidence": breed_conf,
"bio_age": bio_age
}
except Exception as e:
pass
elif media_type == "video":
# For video, we analyze both movement and can extract frame for breed analysis
video_features = analyze_video_gait(selected_media) or {}
# Try to extract a frame from video for breed analysis
try:
cap = cv2.VideoCapture(selected_media)
ret, frame = cap.read()
if ret:
img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
detected_breed, breed_conf, health_aspects = classify_breed_and_health(img, breed)
bio_age = predict_biological_age(img, detected_breed)
breed_info = {
"breed": detected_breed,
"confidence": breed_conf,
"bio_age": bio_age
}
cap.release()
except Exception as e:
pass
# Calculate Composite Healthspan Score
video_weight = 0.4 if video_features else 0.0
hrqol_weight = 0.6 if video_features else 1.0
if video_features:
video_score = (
video_features.get("mobility_score", 70) * 0.15 +
video_features.get("comfort_score", 70) * 0.10 +
video_features.get("vitality_score", 70) * 0.15
)
else:
video_score = 0
hrqol_composite = (
hrqol_scores["vitality"] * 0.25 +
hrqol_scores["comfort"] * 0.25 +
hrqol_scores["emotional_wellbeing"] * 0.25 +
hrqol_scores["alertness"] * 0.25
)
final_healthspan_score = (video_score * video_weight) + (hrqol_composite * hrqol_weight)
final_healthspan_score = min(100, max(0, final_healthspan_score))
# Generate comprehensive report with improved colors
input_type_icon = "πΈ" if media_type == "image" else "π₯"
report_html = f"""
<div style="font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; max-width: 1000px; margin: 0 auto;">
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; padding: 30px; border-radius: 15px; margin: 20px 0; text-align: center; box-shadow: 0 4px 6px rgba(0,0,0,0.1);">
<h2 style="margin: 0; font-size: 2em; text-shadow: 1px 1px 2px rgba(0,0,0,0.3);">{input_type_icon} Comprehensive Healthspan Assessment</h2>
<div style="font-size: 1.1em; margin: 10px 0; opacity: 0.9;">Analysis Type: {input_type}</div>
<div style="font-size: 3em; font-weight: bold; margin: 15px 0; text-shadow: 2px 2px 4px rgba(0,0,0,0.3);">{final_healthspan_score:.1f}/100</div>
<div style="font-size: 1.2em; background: rgba(255,255,255,0.2); padding: 8px 16px; border-radius: 20px; display: inline-block;">{get_healthspan_grade(final_healthspan_score)}</div>
</div>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(240px, 1fr)); gap: 20px; margin: 30px 0;">
"""
# Add domain score cards with improved contrast
for domain, score in [("vitality", "π Vitality"), ("comfort", "π Comfort"), ("emotional_wellbeing", "π Emotional"), ("alertness", "π§ Alertness")]:
colors = get_score_color(hrqol_scores[domain])
report_html += f"""
<div style="border: 2px solid #e0e0e0; padding: 20px; border-radius: 12px; background: #ffffff; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
<h4 style="margin: 0 0 15px 0; color: #333333; font-weight: 600;">{score.split()[1]}</h4>
<div style="background: #e9ecef; height: 12px; border-radius: 6px; margin: 10px 0; border: 1px solid #dee2e6;">
<div style="background: {colors['bg']}; height: 100%; width: {hrqol_scores[domain]}%; border-radius: 6px; transition: width 0.3s ease; position: relative; display: flex; align-items: center; justify-content: center;">
<span style="color: {colors['text']}; font-size: 10px; font-weight: bold; text-shadow: 1px 1px 1px rgba(0,0,0,0.3);">{hrqol_scores[domain]:.0f}</span>
</div>
</div>
<div style="font-size: 1.1em; font-weight: bold; color: #333333;">{hrqol_scores[domain]:.1f}/100</div>
</div>
"""
report_html += "</div>"
# Visual Analysis section with better contrast
if breed_info:
pace_info = ""
if age and age > 0:
pace = breed_info["bio_age"] / age
pace_status = "Accelerated" if pace > 1.2 else "Normal" if pace > 0.8 else "Slow"
pace_color = "#FF5722" if pace > 1.2 else "#4CAF50" if pace < 0.8 else "#FF9800"
pace_info = f"""<p style="margin: 8px 0;"><strong style="color: #333;">Aging Pace:</strong>
<span style="background: {pace_color}; color: white; padding: 4px 8px; border-radius: 12px; font-weight: bold; text-shadow: 1px 1px 1px rgba(0,0,0,0.3);">
{pace:.2f}Γ ({pace_status})</span></p>"""
report_html += f"""
<div style="border: 2px solid #2196F3; padding: 20px; border-radius: 12px; margin: 20px 0; background: #ffffff; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
<h3 style="color: #1976D2; margin: 0 0 15px 0; font-weight: 600; border-bottom: 2px solid #E3F2FD; padding-bottom: 8px;">{input_type_icon} Visual Analysis</h3>
<p style="margin: 8px 0; color: #1976D2;"><strong>Detected Breed:</strong> <span style="color: #1976D2; font-weight: 600;">{breed_info['breed']}</span> <span style="background: #E3F2FD; color: #1976D2; padding: 2px 6px; border-radius: 8px; font-size: 0.9em;">({breed_info['confidence']:.1%} confidence)</span></p>
<p style="margin: 8px 0; color: #1976D2;"><strong>Estimated Biological Age:</strong> <span style="color: #1976D2; font-weight: 600;">{breed_info['bio_age']} years</span></p>
<p style="margin: 8px 0; color: #1976D2;"><strong>Chronological Age:</strong> <span style="color: #1976D2; font-weight: 600;">{age or 'Not provided'} years</span></p>
{pace_info}
</div>
"""
# Add video-specific analysis if available
if video_features:
report_html += f"""
<div style="border: 2px solid #FF5722; padding: 20px; border-radius: 12px; margin: 20px 0; background: #ffffff; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
<h3 style="color: #D84315; margin: 0 0 15px 0; font-weight: 600; border-bottom: 2px solid #FFEBE7; padding-bottom: 8px;">π₯ Video Gait Analysis</h3>
<p style="margin: 8px 0; color: #333;"><strong>Duration:</strong> <span style="color: #D84315; font-weight: 600;">{video_features['duration_sec']} seconds</span></p>
<p style="margin: 8px 0; color: #333;"><strong>Mobility Assessment:</strong> <span style="color: #D84315; font-weight: 600;">{video_features['mobility_assessment']}</span></p>
<p style="margin: 8px 0; color: #333;"><strong>Comfort Assessment:</strong> <span style="color: #D84315; font-weight: 600;">{video_features['comfort_assessment']}</span></p>
<p style="margin: 8px 0; color: #333;"><strong>Vitality Assessment:</strong> <span style="color: #D84315; font-weight: 600;">{video_features['vitality_assessment']}</span></p>
<p style="margin: 8px 0; color: #333;"><strong>Frames Analyzed:</strong> <span style="color: #D84315; font-weight: 600;">{video_features['frames_analyzed']}</span></p>
</div>
"""
# Physical Health Assessment with improved visibility
if health_aspects and media_type == "image":
report_html += f"""
<div style="border: 2px solid #4CAF50; padding: 20px; border-radius: 12px; margin: 20px 0; background: #ffffff; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
<h3 style="color: #2E7D32; margin: 0 0 15px 0; font-weight: 600; border-bottom: 2px solid #E8F5E8; padding-bottom: 8px;">πΈ Physical Health Assessment</h3>
"""
for aspect, data in health_aspects.items():
is_healthy = any(word in data["assessment"].lower() for word in ["healthy", "bright", "clean", "ideal"])
status_icon = "β
" if is_healthy else "β οΈ"
status_color = "#2E7D32" if is_healthy else "#F57C00"
bg_color = "#E8F5E8" if is_healthy else "#FFF3E0"
report_html += f"""
<div style="margin: 10px 0; padding: 12px; background: {bg_color}; border-radius: 8px; border-left: 4px solid {status_color};">
<p style="margin: 0; color: #333;">
<span style="font-size: 1.2em;">{status_icon}</span>
<strong style="color: {status_color};">{aspect}:</strong>
<span style="color: #333; font-weight: 500;">{data['assessment']}</span>
<span style="background: #E0E0E0; color: #424242; padding: 2px 6px; border-radius: 8px; font-size: 0.85em; margin-left: 8px;">
({data['confidence']:.1%} confidence)</span>
</p>
</div>
"""
report_html += "</div>"
# Add recommendations
recommendations = []
if hrqol_scores["vitality"] < 60:
recommendations.append("π **Vitality Enhancement**: Consider shorter, frequent exercise sessions and mental stimulation")
if hrqol_scores["comfort"] < 70:
recommendations.append("π **Comfort Support**: Evaluate joint supplements and orthopedic bedding")
if hrqol_scores["emotional_wellbeing"] < 65:
recommendations.append("π **Emotional Care**: Increase routine predictability and reduce stressors")
if hrqol_scores["alertness"] < 70:
recommendations.append("π§ **Cognitive Support**: Implement brain training games and mental challenges")
if recommendations:
report_html += f"""
<div style="border: 2px solid #FF9800; padding: 20px; border-radius: 12px; margin: 20px 0; background: #ffffff; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
<h3 style="color: #F57C00; margin: 0 0 15px 0; font-weight: 600; border-bottom: 2px solid #FFF3E0; padding-bottom: 8px;">π― Personalized Recommendations</h3>
{''.join([f'<div style="margin: 10px 0; padding: 12px; background: #FFF8E1; border-radius: 8px; border-left: 4px solid #FF9800;"><p style="margin: 0; color: #333; font-weight: 500;">{rec}</p></div>' for rec in recommendations])}
</div>
"""
# Disclaimer with improved visibility
report_html += """
<div style="background: #F5F5F5; border: 1px solid #E0E0E0; padding: 20px; border-radius: 8px; margin: 20px 0;">
<p style="margin: 0; font-size: 0.9em; color: #424242; line-height: 1.5;">
<strong style="color: #D32F2F;">β οΈ Important Disclaimer:</strong>
This analysis uses validated HRQOL assessment tools but is for educational purposes only.
Always consult with a qualified veterinarian for professional medical advice and diagnosis.
</p>
</div>
</div>
"""
yield report_html
def update_media_input(input_type):
"""Update the visibility of media inputs based on dropdown selection"""
if input_type == "Image Analysis":
return gr.update(visible=True), gr.update(visible=False)
else: # Video Analysis
return gr.update(visible=False), gr.update(visible=True)
# Custom CSS for enhanced styling
custom_css = """
/* Enhanced gradient background */
.gradio-container {
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
min-height: 100vh;
}
/* Card styling */
.input-card, .questionnaire-card {
background: white;
border-radius: 15px;
padding: 25px;
box-shadow: 0 8px 25px rgba(0,0,0,0.1);
margin: 10px;
border: 1px solid #e0e6ed;
}
/* Header styling */
.main-header {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
text-align: center;
padding: 30px;
border-radius: 15px;
margin-bottom: 30px;
box-shadow: 0 8px 25px rgba(102, 126, 234, 0.3);
}
/* Button styling */
.analyze-button {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
border: none;
color: white;
padding: 15px 30px;
font-size: 16px;
font-weight: 600;
border-radius: 25px;
cursor: pointer;
transition: all 0.3s ease;
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.3);
}
.analyze-button:hover {
transform: translateY(-2px);
box-shadow: 0 8px 25px rgba(102, 126, 234, 0.4);
}
/* Accordion styling */
.accordion-header {
background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%);
border: 1px solid #dee2e6;
border-radius: 8px;
padding: 15px;
margin: 10px 0;
cursor: pointer;
transition: all 0.3s ease;
}
.accordion-header:hover {
background: linear-gradient(135deg, #e9ecef 0%, #dee2e6 100%);
transform: translateY(-1px);
}
/* Dropdown styling */
.gr-dropdown {
border-radius: 8px;
border: 2px solid #e0e6ed;
transition: border-color 0.3s ease;
}
.gr-dropdown:focus {
border-color: #667eea;
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1);
}
/* Progress animation */
@keyframes pulse {
0% { opacity: 1; }
50% { opacity: 0.5; }
100% { opacity: 1; }
}
.loading-pulse {
animation: pulse 2s infinite;
}
"""
# Gradio Interface with Enhanced UI
with gr.Blocks(
title="πΆ VetMetrica HRQOL Dog Health Analyzer",
theme=gr.themes.Soft(),
css=custom_css
) as demo:
# Main Header
gr.HTML("""
<div class="main-header">
<h1 style="margin: 0; font-size: 2.5em; text-shadow: 2px 2px 4px rgba(0,0,0,0.3);">
π VetMetricaΒ© HRQOL Dog Health & Age Analyzer
</h1>
<p style="margin: 15px 0 0 0; font-size: 1.2em; opacity: 0.9;">
AI-powered comprehensive analysis using validated Health-Related Quality of Life metrics
</p>
</div>
""")
with gr.Row():
# Left Column - Enhanced Media Input
with gr.Column(scale=1):
gr.HTML("""
<div class="input-card">
<h2 style="color: #667eea; margin: 0 0 20px 0; text-align: center;">
πΈ Media Input Selection
</h2>
</div>
""")
# Enhanced dropdown with better styling
input_type_dropdown = gr.Dropdown(
choices=["Image Analysis", "Video Analysis"],
label="π Select Analysis Type",
value="Image Analysis",
interactive=True,
elem_classes=["gr-dropdown"]
)
# Media input components with enhanced labels
image_input = gr.Image(
type="pil",
label="π· Upload Dog Photo or Use Webcam",
visible=True,
sources=["upload", "webcam"],
height=300
)
video_input = gr.Video(
label="π₯ Upload Video (10-30 seconds) or Record with Webcam",
visible=False,
sources=["upload", "webcam"],
height=300
)
# Update visibility based on dropdown selection
input_type_dropdown.change(
fn=update_media_input,
inputs=[input_type_dropdown],
outputs=[image_input, video_input]
)
# Enhanced optional information section
gr.HTML("""
<div style="margin: 20px 0;">
<h3 style="color: #667eea; text-align: center; margin-bottom: 15px;">
βοΈ Optional Information
</h3>
</div>
""")
breed_input = gr.Dropdown(
STANFORD_BREEDS,
label="π Dog Breed (Auto-detected if not specified)",
value=None,
allow_custom_value=True,
elem_classes=["gr-dropdown"]
)
age_input = gr.Number(
label="π
Chronological Age (years)",
precision=1,
value=None,
minimum=0,
maximum=25
)
# Right Column - Enhanced HRQOL Questionnaire
with gr.Column(scale=1):
gr.HTML("""
<div class="questionnaire-card">
<h2 style="color: #667eea; margin: 0 0 10px 0; text-align: center;">
π VetMetricaΒ© HRQOL Assessment
</h2>
<p style="text-align: center; color: #666; font-style: italic; margin-bottom: 20px;">
Complete all sections for accurate healthspan analysis
</p>
</div>
""")
hrqol_inputs = []
for domain_key, domain_data in HRQOL_QUESTIONNAIRE.items():
# Enhanced accordion header
gr.HTML(f"""
<div class="accordion-header">
<h3 style="margin: 0; color: #333;">
{domain_data['title']}
</h3>
<p style="margin: 5px 0 0 0; color: #666; font-size: 0.9em;">
{domain_data['description']}
</p>
</div>
""")
with gr.Accordion(domain_data["title"], open=True):
for question in domain_data["questions"]:
# Enhanced dropdown for each question
dropdown = gr.Dropdown(
choices=question["options"],
label=question["text"],
value=None,
interactive=True,
elem_classes=["gr-dropdown"]
)
hrqol_inputs.append(dropdown)
# Enhanced Analysis Button
gr.HTML("""
<div style="text-align: center; margin: 30px 0;">
""")
analyze_button = gr.Button(
"π¬ Analyze Comprehensive Healthspan",
variant="primary",
size="lg",
elem_classes=["analyze-button"]
)
gr.HTML("</div>")
# Enhanced Results Section
output_report = gr.HTML()
# Connect analysis function with loading
analyze_button.click(
fn=comprehensive_healthspan_analysis,
inputs=[input_type_dropdown, image_input, video_input, breed_input, age_input] + hrqol_inputs,
outputs=output_report
)
if __name__ == "__main__":
demo.launch()
|