Spaces:
Running
Running
File size: 65,993 Bytes
8ca6ff4 430248b aef38cb 430248b 0d6b0a2 430248b 40f4896 f42c0d1 a95b5f8 aef38cb 430248b 7c7bb88 aef38cb 430248b aef38cb 430248b 4918931 430248b 4918931 430248b f42c0d1 4918931 430248b e4b7c0e 430248b 4918931 430248b 4918931 aef38cb 4918931 aef38cb 6ffd8d5 897b2d4 40f4896 e4b7c0e 897b2d4 e4b7c0e 897b2d4 e4b7c0e 897b2d4 e4b7c0e 897b2d4 e4b7c0e 897b2d4 e4b7c0e 897b2d4 e4b7c0e 897b2d4 e4b7c0e 897b2d4 e4b7c0e 897b2d4 e4b7c0e 897b2d4 e4b7c0e 897b2d4 e4b7c0e 897b2d4 aef38cb 67e491a 6ffd8d5 67e491a 6ffd8d5 d0ae457 67e491a 6ffd8d5 d0ae457 67e491a d0ae457 67e491a 6ffd8d5 67e491a 6ffd8d5 d0ae457 6ffd8d5 d0ae457 6ffd8d5 d0ae457 6ffd8d5 d0ae457 6ffd8d5 d0ae457 6ffd8d5 d0ae457 6ffd8d5 d0ae457 67e491a 6ffd8d5 d0ae457 6ffd8d5 67e491a 6ffd8d5 67e491a 6ffd8d5 67e491a 6ffd8d5 67e491a 6ffd8d5 d0ae457 67e491a d0ae457 6ffd8d5 d0ae457 67e491a 6ffd8d5 67e491a d0ae457 6ffd8d5 67e491a d0ae457 6ffd8d5 67e491a 6ffd8d5 67e491a 6ffd8d5 67e491a 6ffd8d5 67e491a 6ffd8d5 d0ae457 6ffd8d5 d0ae457 6ffd8d5 d0ae457 6ffd8d5 d0ae457 6ffd8d5 d0ae457 67e491a d0ae457 67e491a d0ae457 6ffd8d5 67e491a d0ae457 6ffd8d5 67e491a d0ae457 6ffd8d5 67e491a 6ffd8d5 d0ae457 6ffd8d5 d0ae457 67e491a d0ae457 6ffd8d5 67e491a d0ae457 67e491a d0ae457 6ffd8d5 f42c0d1 67e491a f42c0d1 67e491a f42c0d1 67e491a f42c0d1 67e491a d0ae457 f42c0d1 d0ae457 6ffd8d5 f42c0d1 67e491a f42c0d1 67e491a f42c0d1 6ffd8d5 67e491a 6ffd8d5 67e491a 6ffd8d5 67e491a d0ae457 6ffd8d5 d0ae457 6ffd8d5 d0ae457 6ffd8d5 d0ae457 6ffd8d5 d0ae457 f42c0d1 d0ae457 6ffd8d5 d0ae457 6ffd8d5 d0ae457 67e491a d0ae457 67e491a f42c0d1 67e491a d0ae457 67e491a 6ffd8d5 d0ae457 6ffd8d5 67e491a f42c0d1 d0ae457 67e491a 6ffd8d5 67e491a d0ae457 67e491a d0ae457 6ffd8d5 d0ae457 6ffd8d5 f42c0d1 d0ae457 6ffd8d5 d0ae457 6ffd8d5 d0ae457 6ffd8d5 d0ae457 6ffd8d5 d0ae457 6ffd8d5 d0ae457 6ffd8d5 d0ae457 67e491a d0ae457 6ffd8d5 d0ae457 f42c0d1 d0ae457 f42c0d1 d0ae457 6ffd8d5 f42c0d1 6ffd8d5 f42c0d1 6ffd8d5 f42c0d1 6ffd8d5 d0ae457 6ffd8d5 d0ae457 f42c0d1 d0ae457 f42c0d1 6ffd8d5 8ca6ff4 430248b 4918931 aef38cb 430248b aef38cb 430248b 4918931 430248b aef38cb 430248b aef38cb 4918931 aef38cb 41e130d aef38cb 430248b aef38cb 430248b aef38cb 41e130d 4918931 41e130d 4918931 41e130d 897b2d4 4918931 41e130d 4918931 41e130d 897b2d4 41e130d 4918931 41e130d 4918931 41e130d 897b2d4 41e130d 897b2d4 4918931 41e130d 8ca6ff4 897b2d4 e4b7c0e 897b2d4 e4b7c0e 897b2d4 4918931 41e130d e4b7c0e 897b2d4 e4b7c0e 897b2d4 e4b7c0e 897b2d4 e4b7c0e 897b2d4 daa408f 897b2d4 daa408f 897b2d4 daa408f 897b2d4 daa408f 897b2d4 daa408f 8ca6ff4 41e130d 897b2d4 41e130d 897b2d4 41e130d 897b2d4 41e130d aef38cb 40f4896 67e491a 4162146 40f4896 4532a3c 6ffd8d5 4532a3c 40f4896 67e491a f42c0d1 40f4896 4532a3c daa408f 4532a3c f42c0d1 daa408f 4532a3c f42c0d1 4532a3c cfbf4f1 40f4896 f51b769 4532a3c cfbf4f1 40f4896 41e130d 897b2d4 cfbf4f1 40f4896 897b2d4 e4b7c0e 897b2d4 41e130d 4532a3c 897b2d4 67e491a 897b2d4 4532a3c 41e130d 4532a3c f42c0d1 6ffd8d5 67e491a f42c0d1 897b2d4 67e491a 897b2d4 f42c0d1 897b2d4 4532a3c f42c0d1 4532a3c f42c0d1 67e491a f42c0d1 4532a3c 67e491a 4532a3c f42c0d1 4532a3c f42c0d1 897b2d4 f42c0d1 897b2d4 67e491a 4532a3c 897b2d4 daa408f 67e491a 6ffd8d5 daa408f 897b2d4 daa408f 897b2d4 daa408f 897b2d4 daa408f 897b2d4 6ffd8d5 897b2d4 6ffd8d5 cfbf4f1 6ffd8d5 897b2d4 daa408f bd18a95 daa408f 4918931 f42c0d1 67e491a 6ffd8d5 d0ae457 67e491a 6ffd8d5 d0ae457 67e491a 897b2d4 2716996 6ffd8d5 2716996 6ffd8d5 2716996 f42c0d1 897b2d4 67e491a 6ffd8d5 897b2d4 67e491a 897b2d4 25d0dd1 f42c0d1 6ffd8d5 f42c0d1 6ffd8d5 f42c0d1 daa408f 4532a3c daa408f 4532a3c daa408f cfbf4f1 daa408f 4532a3c f42c0d1 897b2d4 cfbf4f1 897b2d4 cfbf4f1 897b2d4 cfbf4f1 897b2d4 cfbf4f1 f42c0d1 6ffd8d5 cfbf4f1 6ffd8d5 67e491a cfbf4f1 67e491a 897b2d4 daa408f 67e491a daa408f 897b2d4 f42c0d1 897b2d4 daa408f cfbf4f1 6ffd8d5 f42c0d1 6ffd8d5 daa408f 897b2d4 40f4896 aef38cb 4532a3c daa408f 4532a3c daa408f 4532a3c 40f4896 d20d469 cf6850c d20d469 cf6850c d20d469 cf6850c d20d469 2a8882a d20d469 cf6850c d20d469 2a8882a d20d469 2a8882a d20d469 180b1bf d20d469 cf6850c d20d469 cf6850c d20d469 180b1bf d20d469 180b1bf d20d469 180b1bf d20d469 180b1bf 40f4896 d20d469 40f4896 180b1bf d20d469 cf6850c 89e2e3d 2a8882a d20d469 2a8882a d20d469 2a8882a df441b6 2a8882a f0c1f5a df441b6 f0c1f5a d20d469 2a8882a f0c1f5a df441b6 f0c1f5a d20d469 f0c1f5a d20d469 180b1bf d20d469 f0c1f5a d20d469 1ea1daf 180b1bf d20d469 2a8882a 535458b 2a8882a d20d469 2a8882a 40f4896 df441b6 f0c1f5a d20d469 df441b6 d20d469 f0c1f5a df441b6 f0c1f5a d20d469 89e2e3d d20d469 89e2e3d d20d469 89e2e3d d20d469 89e2e3d df441b6 89e2e3d df441b6 d20d469 89e2e3d d20d469 f0c1f5a 40f4896 df441b6 40f4896 67e491a d20d469 40f4896 d20d469 40f4896 d20d469 180b1bf d20d469 180b1bf 40f4896 41e130d 180b1bf 41e130d 180b1bf df441b6 180b1bf 40f4896 180b1bf d20d469 180b1bf d20d469 180b1bf 4918931 df441b6 41e130d 180b1bf 2a8882a df441b6 d20d469 180b1bf df441b6 d20d469 180b1bf df441b6 535458b 2a8882a f0c1f5a 2a8882a f0c1f5a 2a8882a 897b2d4 180b1bf d20d469 180b1bf d20d469 180b1bf 40f4896 897b2d4 180b1bf 41e130d f51b769 4532a3c 41e130d aef38cb d20d469 a95b5f8 d20d469 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 |
# app.py
import os
import gradio as gr
from PIL import Image
import torch
import numpy as np
import cv2
from transformers import (
CLIPProcessor, CLIPModel,
AutoProcessor
)
import time
import logging
# Setup logging for continuous feedback
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# βββββββββββββββββββββββββββββ
# CONFIG: set your HF token here or via env var HF_TOKEN
HF_TOKEN = os.getenv("HF_TOKEN")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 1. CLIP for breed, age, basic health
clip_model = CLIPModel.from_pretrained(
"openai/clip-vit-base-patch16",
token=HF_TOKEN
).to(device)
clip_processor = CLIPProcessor.from_pretrained(
"openai/clip-vit-base-patch16",
token=HF_TOKEN
)
# 2. Alternative medical analysis model
try:
medical_processor = AutoProcessor.from_pretrained(
"microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224",
token=HF_TOKEN
)
medical_model = CLIPModel.from_pretrained(
"microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224",
token=HF_TOKEN
).to(device)
MEDICAL_MODEL_AVAILABLE = True
except:
medical_processor = clip_processor
medical_model = clip_model
MEDICAL_MODEL_AVAILABLE = False
# Stanford Dogs & lifespans
STANFORD_BREEDS = [
"afghan hound", "african hunting dog", "airedale", "american staffordshire terrier",
"appenzeller", "australian terrier", "basenji", "basset", "beagle",
"bedlington terrier", "bernese mountain dog", "black-and-tan coonhound",
"blenheim spaniel", "bloodhound", "bluetick", "border collie", "border terrier",
"borzoi", "boston bull", "bouvier des flandres", "boxer", "brabancon griffon",
"briard", "brittany spaniel", "bull mastiff", "cairn", "cardigan",
"chesapeake bay retriever", "chihuahua", "chow", "clumber", "cocker spaniel",
"collie", "curly-coated retriever", "dandie dinmont", "dhole", "dingo",
"doberman", "english foxhound", "english setter", "english springer",
"entlebucher", "eskimo dog", "flat-coated retriever", "french bulldog",
"german shepherd", "german short-haired pointer", "giant schnauzer",
"golden retriever", "gordon setter", "great dane", "great pyrenees",
"greater swiss mountain dog", "groenendael", "ibizan hound", "irish setter",
"irish terrier", "irish water spaniel", "irish wolfhound", "italian greyhound",
"japanese spaniel", "keeshond", "kelpie", "kerry blue terrier", "komondor",
"kuvasz", "labrador retriever", "lakeland terrier", "leonberg", "lhasa",
"malamute", "malinois", "maltese dog", "mexican hairless", "miniature pinscher",
"miniature poodle", "miniature schnauzer", "newfoundland", "norfolk terrier",
"norwegian elkhound", "norwich terrier", "old english sheepdog", "otterhound",
"papillon", "pekinese", "pembroke", "pomeranian", "pug", "redbone",
"rhodesian ridgeback", "rottweiler", "saint bernard", "saluki", "samoyed",
"schipperke", "scotch terrier", "scottish deerhound", "sealyham terrier",
"shetland sheepdog", "shih tzu", "siberian husky", "silky terrier",
"soft-coated wheaten terrier", "staffordshire bullterrier", "standard poodle",
"standard schnauzer", "sussex spaniel", "tibetan mastiff", "tibetan terrier",
"toy poodle", "toy terrier", "vizsla", "walker hound", "weimaraner",
"welsh springer spaniel", "west highland white terrier", "whippet",
"wire-haired fox terrier", "yorkshire terrier"
]
BREED_LIFESPAN = {
"afghan hound": 11.1, "african hunting dog": 10.5, "airedale": 11.5,
"american staffordshire terrier": 12.5, "appenzeller": 13.0, "australian terrier": 13.5,
"basenji": 12.1, "basset": 12.5, "beagle": 12.5, "bedlington terrier": 13.7,
"bernese mountain dog": 10.1, "black-and-tan coonhound": 10.8, "blenheim spaniel": 13.3,
"bloodhound": 9.3, "bluetick": 11.0, "border collie": 13.1, "border terrier": 14.2,
"borzoi": 12.0, "boston bull": 11.8, "bouvier des flandres": 11.3, "boxer": 11.3,
"brabancon griffon": 13.0, "briard": 12.6, "brittany spaniel": 13.5,
"bull mastiff": 10.2, "cairn": 14.0, "cardigan": 13.2, "chesapeake bay retriever": 11.6,
"chihuahua": 11.8, "chow": 12.1, "clumber": 12.3, "cocker spaniel": 13.3,
"collie": 13.3, "curly-coated retriever": 12.2, "dandie dinmont": 12.8,
"dhole": 10.0, "dingo": 10.0, "doberman": 11.2, "english foxhound": 13.0,
"english setter": 13.1, "english springer": 13.5, "entlebucher": 13.0,
"eskimo dog": 11.3, "flat-coated retriever": 11.7, "french bulldog": 9.8,
"german shepherd": 11.3, "german short-haired pointer": 13.4, "giant schnauzer": 12.1,
"golden retriever": 13.2, "gordon setter": 12.4, "great dane": 10.6,
"great pyrenees": 10.9, "greater swiss mountain dog": 10.9, "groenendael": 12.0,
"ibizan hound": 13.3, "irish setter": 12.9, "irish terrier": 13.5,
"irish water spaniel": 10.8, "irish wolfhound": 9.9, "italian greyhound": 14.0,
"japanese spaniel": 13.3, "keeshond": 12.3, "kelpie": 12.0, "kerry blue terrier": 12.4,
"komondor": 10.5, "kuvasz": 10.5, "labrador retriever": 13.1, "lakeland terrier": 14.2,
"leonberg": 10.0, "lhasa": 14.0, "malamute": 11.3, "malinois": 12.0,
"maltese dog": 13.1, "mexican hairless": 13.0, "miniature pinscher": 13.7,
"miniature poodle": 14.0, "miniature schnauzer": 13.3, "newfoundland": 11.0,
"norfolk terrier": 13.5, "norwegian elkhound": 13.0, "norwich terrier": 14.0,
"old english sheepdog": 12.1, "otterhound": 12.0, "papillon": 14.5,
"pekinese": 13.3, "pembroke": 13.2, "pomeranian": 12.2, "pug": 11.6,
"redbone": 12.0, "rhodesian ridgeback": 12.0, "rottweiler": 10.6,
"saint bernard": 9.3, "saluki": 13.3, "samoyed": 13.1, "schipperke": 14.2,
"scotch terrier": 12.7, "scottish deerhound": 10.5, "sealyham terrier": 13.1,
"shetland sheepdog": 13.4, "shih tzu": 12.8, "siberian husky": 11.9,
"silky terrier": 13.3, "soft-coated wheaten terrier": 13.7, "staffordshire bullterrier": 12.0,
"standard poodle": 14.0, "standard schnauzer": 13.0, "sussex spaniel": 13.5,
"tibetan mastiff": 13.3, "tibetan terrier": 13.8, "toy poodle": 14.0,
"toy terrier": 13.0, "vizsla": 13.5, "walker hound": 12.0, "weimaraner": 12.8,
"welsh springer spaniel": 14.0, "west highland white terrier": 13.4, "whippet": 13.4,
"wire-haired fox terrier": 13.5, "yorkshire terrier": 13.3
}
# SHORTENED HRQOL Questionnaire
HRQOL_QUESTIONNAIRE = {
"vitality": {
"title": "π Vitality & Energy Assessment",
"description": "Evaluate your dog's overall energy and responsiveness",
"questions": [
{
"id": "vitality_comprehensive",
"text": "How would you rate your dog's overall vitality considering energy levels, playfulness, and responsiveness to exciting activities?",
"options": [
"Excellent - Very energetic, always seeks play, immediate enthusiastic responses",
"Very Good - Generally energetic, often seeks play, quick positive responses",
"Good - Moderate energy, sometimes seeks play, moderate response time",
"Fair - Lower energy, rarely seeks play, slow or delayed responses",
"Poor - Very low energy, never seeks play, no response or negative reactions"
]
}
],
"weight": 0.25
},
"comfort": {
"title": "π Comfort & Pain Management",
"description": "Assess overall comfort and mobility",
"questions": [
{
"id": "comfort_comprehensive",
"text": "How would you assess your dog's overall comfort considering activity comfort, pain frequency, and impact on daily life?",
"options": [
"Excellent - Completely comfortable in all activities, never shows pain, no impact on daily life",
"Very Good - Mostly comfortable with minor adjustments, rarely shows pain, minimal impact",
"Good - Some discomfort in certain activities, occasional pain signs, moderate activity modifications",
"Fair - Frequently uncomfortable, often shows pain, significant activity limitations",
"Poor - Severe discomfort in most activities, daily pain signs, major activity restrictions"
]
}
],
"weight": 0.25
},
"emotional_wellbeing": {
"title": "π Emotional Wellbeing",
"description": "Evaluate mood, stress levels, and social engagement",
"questions": [
{
"id": "emotional_comprehensive",
"text": "How would you describe your dog's overall emotional state considering mood, stress/anxiety levels, and family engagement?",
"options": [
"Excellent - Very positive mood, never shows stress, highly engaged with family activities",
"Very Good - Mostly positive mood, rarely shows stress, well engaged with family",
"Good - Generally neutral mood, sometimes shows stress, moderately engaged when invited",
"Fair - Often subdued mood, frequently shows stress, minimally engaged with encouragement",
"Poor - Negative/depressed mood, constantly stressed, avoids family activities"
]
}
],
"weight": 0.25
},
"alertness": {
"title": "π§ Alertness & Cognition",
"description": "Assess cognitive function and awareness",
"questions": [
{
"id": "alertness_comprehensive",
"text": "How would you rate your dog's overall cognitive function considering awareness, command response, and focus during activities?",
"options": [
"Excellent - Highly alert and aware, responds immediately to commands, maintains excellent focus",
"Very Good - Alert and notices things quickly, usually responds quickly, good focus with occasional distraction",
"Good - Moderately alert with some delay, sometimes needs repetition, moderate focus with difficulty concentrating",
"Fair - Slightly alert and slow to notice, often needs multiple attempts, poor focus and easily distracted",
"Poor - Not alert or confused, rarely responds to commands, cannot maintain attention or focus"
]
}
],
"weight": 0.25
}
}
# ====== ENHANCED BIOLOGICAL AGE PREDICTION FUNCTIONS ======
def predict_biological_age_enhanced(img: Image.Image, video_path: str, breed: str, hrqol_scores: dict, age: int = None):
"""Enhanced biological age prediction with accurate multi-factor analysis"""
try:
# 1. Base prediction using breed-specific aging curves
breed_lifespan = BREED_LIFESPAN.get(breed.lower(), 12.0)
# 2. Enhanced visual health indicators with detailed analysis
health_indicators = analyze_health_indicators_detailed(img)
# 3. HRQOL-based age adjustment with refined weighting
hrqol_adjustment = calculate_hrqol_age_factor_refined(hrqol_scores)
# 4. Video gait analysis (if available)
gait_adjustment = 0
if video_path:
gait_features = analyze_video_for_age_indicators_enhanced(video_path)
gait_adjustment = gait_features.get('age_factor', 0)
# 5. Multi-factor biological age calculation
if age and age > 0:
# Start with chronological age as base
base_age = float(age)
# Apply visual health assessment (stronger influence)
visual_factor = health_indicators.get('age_factor', 0.0) * 0.8
# Apply HRQOL health adjustment (moderate influence)
hrqol_factor = hrqol_adjustment * 0.6
# Apply gait/movement adjustment (if available)
gait_factor = gait_adjustment * 0.4 if video_path else 0.0
# Calculate combined health impact
total_health_impact = visual_factor + hrqol_factor + gait_factor
# Apply health impact to biological age calculation
# Positive factors = accelerated aging, Negative factors = slower aging
biological_age = base_age * (1.0 + total_health_impact)
# Add breed-specific aging rate adjustments
breed_aging_rate = calculate_breed_aging_rate(breed, age, breed_lifespan)
biological_age = biological_age * breed_aging_rate
else:
# When no chronological age provided, estimate from visual cues
visual_age_estimate = estimate_age_from_visual_cues_enhanced(img, breed)
# Apply health adjustments to visual estimate
health_adjustment = (hrqol_adjustment + gait_adjustment) * 0.5
biological_age = visual_age_estimate * (1.0 + health_adjustment)
# 6. Apply realistic constraints
min_age = max(0.3, age * 0.7) if age else 0.3
max_age = min(breed_lifespan * 1.4, age * 1.6) if age else breed_lifespan * 1.2
biological_age = max(min_age, min(max_age, biological_age))
# 7. Calculate confidence and uncertainty
prediction_confidence = calculate_prediction_confidence_enhanced(health_indicators, hrqol_scores, video_path, age)
uncertainty = max(0.1, (1.0 - prediction_confidence) * 2.0)
return {
'biological_age': round(biological_age, 1),
'uncertainty': round(uncertainty, 1),
'high_uncertainty': uncertainty > 1.5,
'vision_quality': compute_vision_quality_enhanced(img),
'breed_lifespan': breed_lifespan,
'confidence_factors': {
'visual_health': health_indicators,
'hrqol_factor': hrqol_adjustment,
'gait_factor': gait_adjustment,
'total_health_impact': total_health_impact if age else 0.0,
'prediction_confidence': prediction_confidence
}
}
except Exception as e:
logger.error(f"Error in enhanced age prediction: {e}")
# Fallback calculation
fallback_age = age * 1.1 if age else breed_lifespan * 0.4
return {
'biological_age': round(fallback_age, 1),
'uncertainty': 2.0,
'high_uncertainty': True,
'vision_quality': 0.5,
'breed_lifespan': breed_lifespan
}
def analyze_health_indicators_detailed(img: Image.Image):
"""Enhanced visual health analysis with detailed aging assessment"""
try:
# More comprehensive aging assessment prompts
aging_prompts = [
"very young healthy puppy with baby features and perfect health",
"young adult dog with excellent health and prime condition",
"healthy mature adult dog with minor aging signs",
"middle-aged dog with moderate aging and some health decline",
"senior dog with visible aging and health deterioration",
"elderly dog with significant aging and multiple health issues"
]
inputs = clip_processor(text=aging_prompts, images=img, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
logits = clip_model(**inputs).logits_per_image.softmax(-1)[0].cpu().numpy()
# More nuanced age factor weights (higher range for better distinction)
age_weights = [-0.6, -0.3, -0.1, 0.2, 0.4, 0.7]
age_factor = np.dot(logits, age_weights)
# Additional physical condition analysis
condition_prompts = [
"dog with excellent physical condition and youthful appearance",
"dog with good physical condition and minimal aging",
"dog with fair physical condition and moderate aging",
"dog with poor physical condition and advanced aging"
]
inputs2 = clip_processor(text=condition_prompts, images=img, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
condition_logits = clip_model(**inputs2).logits_per_image.softmax(-1)[0].cpu().numpy()
condition_weights = [-0.4, -0.1, 0.2, 0.5]
condition_factor = np.dot(condition_logits, condition_weights)
# Combine factors with weighted importance
combined_factor = (age_factor * 0.7) + (condition_factor * 0.3)
return {
'age_factor': float(combined_factor),
'confidence': float(np.max(logits)),
'distribution': logits.tolist(),
'condition_factor': float(condition_factor)
}
except Exception as e:
logger.error(f"Error in detailed health indicator analysis: {e}")
return {'age_factor': 0.0, 'confidence': 0.5, 'distribution': [0.16]*6, 'condition_factor': 0.0}
def calculate_hrqol_age_factor_refined(hrqol_scores: dict):
"""Refined HRQOL aging factor with stronger impact"""
try:
# Calculate weighted average with domain-specific importance
domain_weights = {
'vitality': 0.35, # Highest correlation with aging
'comfort': 0.30, # Strong correlation with aging
'alertness': 0.25, # Cognitive aging indicator
'emotional_wellbeing': 0.10 # Secondary factor
}
weighted_score = sum(
hrqol_scores.get(domain, 50) * weight
for domain, weight in domain_weights.items()
)
# More pronounced age factor calculation for better distinction
if weighted_score >= 85: # Excellent health
age_factor = -0.25 # Significantly slower aging
elif weighted_score >= 70: # Very good health
age_factor = -0.15 # Slower aging
elif weighted_score >= 55: # Good health
age_factor = -0.05 # Slightly slower aging
elif weighted_score >= 40: # Fair health
age_factor = 0.1 # Slightly accelerated aging
elif weighted_score >= 25: # Poor health
age_factor = 0.3 # Accelerated aging
else: # Very poor health
age_factor = 0.5 # Significantly accelerated aging
return age_factor
except Exception as e:
logger.error(f"Error in refined HRQOL age factor calculation: {e}")
return 0.0
def analyze_video_for_age_indicators_enhanced(video_path: str):
"""Enhanced video analysis with detailed movement assessment"""
try:
cap = cv2.VideoCapture(video_path)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if total_frames == 0:
cap.release()
return {'age_factor': 0.0}
movement_scores = []
energy_scores = []
# Sample more frames for better accuracy
frame_indices = np.linspace(0, total_frames-1, min(20, total_frames), dtype=int)
for idx in frame_indices:
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
ret, frame = cap.read()
if not ret:
continue
img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
# Enhanced movement assessment
movement_prompts = [
"young dog with bouncy energetic playful movement",
"adult dog with smooth confident coordinated movement",
"older dog with careful measured slower movement",
"senior dog with stiff labored difficult movement"
]
inputs = clip_processor(text=movement_prompts, images=img, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
logits = clip_model(**inputs).logits_per_image.softmax(-1)[0].cpu().numpy()
# Stronger movement scoring for better age distinction
movement_weights = [-0.4, -0.1, 0.2, 0.5]
movement_score = np.dot(logits, movement_weights)
movement_scores.append(movement_score)
# Energy level assessment
energy_prompts = [
"very high energy enthusiastic dog",
"good energy alert dog",
"moderate energy calm dog",
"low energy lethargic dog"
]
inputs2 = clip_processor(text=energy_prompts, images=img, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
energy_logits = clip_model(**inputs2).logits_per_image.softmax(-1)[0].cpu().numpy()
energy_weights = [-0.3, -0.1, 0.1, 0.4]
energy_score = np.dot(energy_logits, energy_weights)
energy_scores.append(energy_score)
cap.release()
if movement_scores and energy_scores:
# Combine movement and energy with weighted importance
avg_movement = np.mean(movement_scores)
avg_energy = np.mean(energy_scores)
combined_factor = (avg_movement * 0.7) + (avg_energy * 0.3)
return {
'age_factor': float(combined_factor),
'movement_score': float(avg_movement),
'energy_score': float(avg_energy),
'sample_count': len(movement_scores)
}
else:
return {'age_factor': 0.0}
except Exception as e:
logger.error(f"Error in enhanced video age analysis: {e}")
return {'age_factor': 0.0}
def calculate_breed_aging_rate(breed: str, current_age: int, breed_lifespan: float):
"""Calculate breed-specific aging rate adjustment"""
try:
# Calculate relative age within breed lifespan
relative_age = current_age / breed_lifespan
# Aging rate adjustments based on breed characteristics
if relative_age < 0.2: # Very young (0-20% of lifespan)
aging_rate = 0.95 # Slightly slower development
elif relative_age < 0.4: # Young adult (20-40% of lifespan)
aging_rate = 1.0 # Normal aging
elif relative_age < 0.6: # Mature adult (40-60% of lifespan)
aging_rate = 1.05 # Slightly accelerated
elif relative_age < 0.8: # Senior (60-80% of lifespan)
aging_rate = 1.15 # Accelerated aging
else: # Elderly (80%+ of lifespan)
aging_rate = 1.25 # Significantly accelerated
# Breed-specific adjustments
large_breeds = ["great dane", "saint bernard", "mastiff", "irish wolfhound"]
small_breeds = ["chihuahua", "toy poodle", "papillon", "maltese dog"]
if any(large_breed in breed.lower() for large_breed in large_breeds):
aging_rate *= 1.1 # Large breeds age faster
elif any(small_breed in breed.lower() for small_breed in small_breeds):
aging_rate *= 0.95 # Small breeds age slower
return aging_rate
except Exception as e:
logger.error(f"Error in breed aging rate calculation: {e}")
return 1.0
def estimate_age_from_visual_cues_enhanced(img: Image.Image, breed: str):
"""Enhanced age estimation with more detailed visual analysis"""
try:
breed_lifespan = BREED_LIFESPAN.get(breed.lower(), 12.0)
# More detailed age-specific descriptions
age_ranges = [
(0.3, f"very young {breed} puppy with baby features and soft coat"),
(1.0, f"young {breed} puppy with developing adult features"),
(2.5, f"adolescent {breed} with youthful energy and developing body"),
(4.0, f"young adult {breed} in peak physical condition"),
(7.0, f"mature adult {breed} with full development and strength"),
(10.0, f"middle-aged {breed} with some aging signs and experience"),
(breed_lifespan * 0.85, f"senior {breed} with clear aging and wisdom"),
(breed_lifespan, f"elderly {breed} with advanced aging and slower movement")
]
age_prompts = [desc for _, desc in age_ranges]
inputs = clip_processor(text=age_prompts, images=img, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
logits = clip_model(**inputs).logits_per_image.softmax(-1)[0].cpu().numpy()
# Calculate weighted average age with higher precision
ages = [age for age, _ in age_ranges]
estimated_age = np.dot(logits, ages)
# Apply confidence-based adjustment
confidence = np.max(logits)
if confidence < 0.4: # Low confidence
# Default to middle age estimate
estimated_age = breed_lifespan * 0.5
return max(0.2, min(breed_lifespan * 1.2, estimated_age))
except Exception as e:
logger.error(f"Error in enhanced visual age estimation: {e}")
return BREED_LIFESPAN.get(breed.lower(), 12.0) * 0.5
def calculate_prediction_confidence_enhanced(health_indicators: dict, hrqol_scores: dict, video_path: str, age: int = None):
"""Calculate enhanced prediction confidence"""
try:
confidence_factors = []
# Visual analysis confidence (higher weight)
visual_conf = health_indicators.get('confidence', 0.5)
confidence_factors.append(visual_conf * 0.4)
# Chronological age availability (high importance)
age_conf = 0.95 if age else 0.2
confidence_factors.append(age_conf * 0.3)
# HRQOL completeness and consistency
completed_domains = sum(1 for score in hrqol_scores.values() if score > 0)
hrqol_conf = completed_domains / 4.0
confidence_factors.append(hrqol_conf * 0.2)
# Video availability
video_conf = 0.9 if video_path else 0.5
confidence_factors.append(video_conf * 0.1)
overall_confidence = sum(confidence_factors)
return min(1.0, overall_confidence)
except Exception as e:
return 0.5
def compute_vision_quality_enhanced(img: Image.Image):
"""Enhanced vision quality computation"""
try:
gray = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2GRAY)
# Sharpness calculation
sharpness = cv2.Laplacian(gray, cv2.CV_64F).var()
# Exposure quality
mean_intensity = np.mean(gray)
exposure_quality = 1.0 - abs(mean_intensity - 127.5) / 127.5
# Contrast quality
contrast = np.std(gray) / 128.0
contrast_quality = min(1.0, contrast)
# Combined quality score
quality = (sharpness / 1500.0 * 0.5 + exposure_quality * 0.3 + contrast_quality * 0.2)
quality = min(1.0, quality)
return max(0.1, quality)
except Exception as e:
logger.error(f"Error in enhanced quality computation: {e}")
return 0.5
# ====== EXISTING SUPPORT FUNCTIONS ======
def analyze_medical_image(img: Image.Image):
health_conditions = [
"healthy normal dog",
"dog with visible health issues",
"dog showing signs of illness",
"dog with poor body condition",
"dog with excellent health"
]
if MEDICAL_MODEL_AVAILABLE:
inputs = medical_processor(text=health_conditions, images=img, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
logits = medical_model(**inputs).logits_per_image.softmax(-1)[0].cpu().numpy()
else:
inputs = clip_processor(text=health_conditions, images=img, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
logits = clip_model(**inputs).logits_per_image.softmax(-1)[0].cpu().numpy()
idx = int(np.argmax(logits))
label = health_conditions[idx]
conf = float(logits[idx])
return label, conf
def classify_breed_and_health(img: Image.Image, override=None):
inp = clip_processor(images=img, return_tensors="pt").to(device)
with torch.no_grad():
feats = clip_model.get_image_features(**inp)
text_prompts = [f"a photo of a {b}" for b in STANFORD_BREEDS]
ti = clip_processor(text=text_prompts, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
tf = clip_model.get_text_features(**ti)
sims = (feats @ tf.T).softmax(-1)[0].cpu().numpy()
idx = int(np.argmax(sims))
breed = override or STANFORD_BREEDS[idx]
breed_conf = float(sims[idx])
aspects = {
"Coat Quality": ("shiny healthy coat","dull patchy fur"),
"Eye Clarity": ("bright clear eyes","cloudy milky eyes"),
"Body Condition": ("ideal muscle tone","visible ribs or bones"),
"Dental Health": ("clean white teeth","yellow stained teeth")
}
health = {}
for name,(p,n) in aspects.items():
ti = clip_processor(text=[p,n], return_tensors="pt", padding=True).to(device)
with torch.no_grad():
tf2 = clip_model.get_text_features(**ti)
sim2 = (feats @ tf2.T).softmax(-1)[0].cpu().numpy()
choice = p if sim2[0]>sim2[1] else n
health[name] = {"assessment":choice,"confidence":float(max(sim2))}
return breed, breed_conf, health
def analyze_video_gait(video_path):
if not video_path:
return None
try:
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS) or 24
total = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if total == 0:
cap.release()
return None
indices = np.linspace(0, total-1, min(15, total), dtype=int)
health_scores = []
movement_scores = []
vitality_scores = []
for i in indices:
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
ret, frame = cap.read()
if not ret:
continue
img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
# Health assessment
_, health_conf = analyze_medical_image(img)
health_scores.append(health_conf)
# Movement assessment
movement_prompts = ["dog moving normally", "dog limping or showing pain", "dog moving stiffly"]
inputs = clip_processor(text=movement_prompts, images=img, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
movement_logits = clip_model(**inputs).logits_per_image.softmax(-1)[0].cpu().numpy()
movement_scores.append(float(movement_logits[0]))
# Vitality assessment
vitality_prompts = ["energetic active dog", "lethargic tired dog", "alert playful dog"]
inputs = clip_processor(text=vitality_prompts, images=img, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
vitality_logits = clip_model(**inputs).logits_per_image.softmax(-1)[0].cpu().numpy()
vitality_scores.append(float(vitality_logits[0] + vitality_logits[2]))
cap.release()
if not health_scores:
return None
return {
"duration_sec": round(total/fps, 1),
"mobility_score": float(np.mean(movement_scores)) * 100,
"comfort_score": float(np.mean(health_scores)) * 100,
"vitality_score": float(np.mean(vitality_scores)) * 100,
"frames_analyzed": len(health_scores),
"mobility_assessment": "Normal gait pattern" if np.mean(movement_scores) > 0.6 else "Mobility concerns detected",
"comfort_assessment": "No obvious discomfort" if np.mean(health_scores) > 0.7 else "Possible discomfort signs",
"vitality_assessment": "Good energy level" if np.mean(vitality_scores) > 0.6 else "Low energy observed"
}
except Exception as e:
return None
def score_from_response(response, score_mapping):
"""Extract numeric score from text response"""
if not response:
return 50
for key, value in score_mapping.items():
if key.lower() in response.lower():
return value
return 50
def calculate_hrqol_scores(hrqol_responses):
"""Convert comprehensive HRQOL responses to 0-100 domain scores"""
score_mapping = {
"excellent": 100, "very good": 80, "good": 60, "fair": 40, "poor": 20
}
domain_scores = {}
# Each domain now has one comprehensive question
domain_scores["vitality"] = score_from_response(
hrqol_responses.get("vitality_comprehensive", ""), score_mapping
)
domain_scores["comfort"] = score_from_response(
hrqol_responses.get("comfort_comprehensive", ""), score_mapping
)
domain_scores["emotional_wellbeing"] = score_from_response(
hrqol_responses.get("emotional_comprehensive", ""), score_mapping
)
domain_scores["alertness"] = score_from_response(
hrqol_responses.get("alertness_comprehensive", ""), score_mapping
)
return domain_scores
def get_score_color(score):
"""Return background and text color based on score for better visibility"""
if score >= 80:
return {"bg": "#4CAF50", "text": "#FFFFFF"} # Green background, white text
elif score >= 60:
return {"bg": "#FFC107", "text": "#000000"} # Yellow background, black text
elif score >= 40:
return {"bg": "#FF9800", "text": "#FFFFFF"} # Orange background, white text
else:
return {"bg": "#F44336", "text": "#FFFFFF"} # Red background, white text
def get_healthspan_grade(score):
if score >= 85:
return "Excellent (A+)"
elif score >= 75:
return "Very Good (A)"
elif score >= 65:
return "Good (B)"
elif score >= 55:
return "Fair (C)"
elif score >= 45:
return "Poor (D)"
else:
return "Critical (F)"
def show_loading():
"""Display loading animation"""
return """
<div style="text-align: center; padding: 40px;">
<div style="display: inline-block; width: 40px; height: 40px; border: 4px solid #f3f3f3; border-top: 4px solid #667eea; border-radius: 50%; animation: spin 1s linear infinite;"></div>
<style>
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
</style>
<h3 style="color: #667eea; margin-top: 20px;">π¬ Analyzing Your Dog's Health...</h3>
<p style="color: #666;">Please wait while we process the image/video and questionnaire data using enhanced AI models.</p>
<div style="background: #f0f0f0; border-radius: 20px; padding: 10px; margin: 20px auto; width: 300px;">
<div style="background: linear-gradient(90deg, #667eea, #764ba2); height: 6px; border-radius: 10px; width: 0%; animation: progress 3s ease-in-out infinite;"></div>
</div>
<style>
@keyframes progress {
0% { width: 0%; }
50% { width: 80%; }
100% { width: 100%; }
}
</style>
</div>
"""
def comprehensive_healthspan_analysis(input_type, image_input, video_input, breed, age, *hrqol_responses):
"""Enhanced comprehensive analysis with improved biological age prediction"""
# Show loading first
yield show_loading()
# Simulate processing time for enhanced computations
time.sleep(3)
# Determine which input to use based on dropdown selection
if input_type == "Image Analysis":
selected_media = image_input
media_type = "image"
video_path = None
elif input_type == "Video Analysis":
selected_media = video_input
media_type = "video"
video_path = video_input
else:
yield "β *Error*: Please select an input type."
return
if selected_media is None:
yield f"β *Error*: Please provide a {media_type} for analysis."
return
# Check if questionnaire is completed
if not hrqol_responses or all(not r for r in hrqol_responses):
yield "β *Error*: Please complete the HRQOL questionnaire before analysis."
return
# Build HRQOL responses dictionary - Updated for shortened questionnaire
response_keys = []
for domain_key, domain_data in HRQOL_QUESTIONNAIRE.items():
for question in domain_data["questions"]:
response_keys.append(question["id"])
hrqol_dict = {key: hrqol_responses[i] if i < len(hrqol_responses) else ""
for i, key in enumerate(response_keys)}
# Calculate HRQOL scores
hrqol_scores = calculate_hrqol_scores(hrqol_dict)
# Initialize analysis variables
video_features = {}
breed_info = None
enhanced_age_info = None
health_aspects = {}
# Perform analysis based on media type
if media_type == "image":
try:
detected_breed, breed_conf, health_aspects = classify_breed_and_health(selected_media, breed)
# ENHANCED biological age prediction with improved accuracy
enhanced_age_info = predict_biological_age_enhanced(
selected_media, None, detected_breed, hrqol_scores, age
)
breed_info = {
"breed": detected_breed,
"confidence": breed_conf,
"bio_age": enhanced_age_info['biological_age'],
"uncertainty": enhanced_age_info['uncertainty'],
"high_uncertainty": enhanced_age_info['high_uncertainty'],
"vision_quality": enhanced_age_info['vision_quality'],
"confidence_factors": enhanced_age_info['confidence_factors']
}
except Exception as e:
logger.error(f"Image analysis error: {e}")
elif media_type == "video":
# For video, analyze both movement and extract frame for breed analysis
video_features = analyze_video_gait(selected_media) or {}
# Try to extract a frame from video for breed analysis
try:
cap = cv2.VideoCapture(selected_media)
ret, frame = cap.read()
if ret:
img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
detected_breed, breed_conf, health_aspects = classify_breed_and_health(img, breed)
# ENHANCED biological age prediction with video
enhanced_age_info = predict_biological_age_enhanced(
img, selected_media, detected_breed, hrqol_scores, age
)
breed_info = {
"breed": detected_breed,
"confidence": breed_conf,
"bio_age": enhanced_age_info['biological_age'],
"uncertainty": enhanced_age_info['uncertainty'],
"high_uncertainty": enhanced_age_info['high_uncertainty'],
"vision_quality": enhanced_age_info['vision_quality'],
"confidence_factors": enhanced_age_info['confidence_factors']
}
cap.release()
except Exception as e:
logger.error(f"Video analysis error: {e}")
# Calculate Composite Healthspan Score (enhanced)
video_weight = 0.3 if video_features else 0.0
hrqol_weight = 0.7 if video_features else 1.0
if video_features:
video_score = (
video_features.get("mobility_score", 70) * 0.4 +
video_features.get("comfort_score", 70) * 0.3 +
video_features.get("vitality_score", 70) * 0.3
)
else:
video_score = 0
hrqol_composite = (
hrqol_scores["vitality"] * 0.25 +
hrqol_scores["comfort"] * 0.25 +
hrqol_scores["emotional_wellbeing"] * 0.25 +
hrqol_scores["alertness"] * 0.25
)
final_healthspan_score = (video_score * video_weight) + (hrqol_composite * hrqol_weight)
final_healthspan_score = min(100, max(0, final_healthspan_score))
# Generate comprehensive report with enhanced features
input_type_icon = "πΈ" if media_type == "image" else "π₯"
report_html = f"""
<div style="font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; max-width: 1000px; margin: 0 auto;">
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; padding: 30px; border-radius: 15px; margin: 20px 0; text-align: center; box-shadow: 0 4px 6px rgba(0,0,0,0.1);">
<h2 style="margin: 0; font-size: 2em; text-shadow: 1px 1px 2px rgba(0,0,0,0.3);">{input_type_icon} Enhanced Multi-Modal Health Assessment</h2>
<div style="font-size: 1.1em; margin: 10px 0; opacity: 0.9;">Analysis Type: {input_type} | Advanced Biological Age Prediction</div>
<div style="font-size: 3em; font-weight: bold; margin: 15px 0; text-shadow: 2px 2px 4px rgba(0,0,0,0.3);">{final_healthspan_score:.1f}/100</div>
<div style="font-size: 1.2em; background: rgba(255,255,255,0.2); padding: 8px 16px; border-radius: 20px; display: inline-block;">{get_healthspan_grade(final_healthspan_score)}</div>
</div>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(240px, 1fr)); gap: 20px; margin: 30px 0;">
"""
# Add domain score cards with improved contrast
for domain, score in [("vitality", "π Vitality"), ("comfort", "π Comfort"), ("emotional_wellbeing", "π Emotional"), ("alertness", "π§ Alertness")]:
colors = get_score_color(hrqol_scores[domain])
report_html += f"""
<div style="border: 2px solid #e0e0e0; padding: 20px; border-radius: 12px; background: #ffffff; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
<h4 style="margin: 0 0 15px 0; color: #333333; font-weight: 600;">{score.split()[1]}</h4>
<div style="background: #e9ecef; height: 12px; border-radius: 6px; margin: 10px 0; border: 1px solid #dee2e6;">
<div style="background: {colors['bg']}; height: 100%; width: {hrqol_scores[domain]}%; border-radius: 6px; transition: width 0.3s ease; position: relative; display: flex; align-items: center; justify-content: center;">
<span style="color: {colors['text']}; font-size: 10px; font-weight: bold; text-shadow: 1px 1px 1px rgba(0,0,0,0.3);">{hrqol_scores[domain]:.0f}</span>
</div>
</div>
<div style="font-size: 1.1em; font-weight: bold; color: #333333;">{hrqol_scores[domain]:.1f}/100</div>
</div>
"""
report_html += "</div>"
# Enhanced Visual Analysis section with improved accuracy
if breed_info:
uncertainty_info = ""
if breed_info.get('high_uncertainty', False):
uncertainty_info = f"""<div style="background: #fff3cd; border: 1px solid #ffeaa7; padding: 10px; border-radius: 8px; margin: 10px 0;">
<p style="margin: 0; color: #856404;"><strong>β High Uncertainty:</strong>
Age prediction uncertainty is Β±{breed_info.get('uncertainty', 0):.1f} years. Consider veterinary consultation.</p>
</div>"""
pace_info = ""
if age and age > 0:
pace = breed_info["bio_age"] / age
pace_status = "Accelerated" if pace > 1.2 else "Normal" if pace > 0.8 else "Slow"
pace_color = "#FF5722" if pace > 1.2 else "#4CAF50" if pace < 0.8 else "#FF9800"
pace_info = f"""<p style="margin: 8px 0;"><strong style="color: #000000;">Aging Pace:</strong>
<span style="background: {pace_color}; color: white; padding: 4px 8px; border-radius: 12px; font-weight: bold; text-shadow: 1px 1px 1px rgba(0,0,0,0.3);">
{pace:.2f}Γ ({pace_status})</span></p>"""
vision_quality_info = f"""<p style="margin: 8px 0;"><strong style="color: #000000;">Image Quality:</strong>
<span style="color: #000000; font-weight: 700;">{breed_info.get('vision_quality', 0.5)*100:.0f}%</span></p>"""
# Confidence factors breakdown
confidence_factors = breed_info.get('confidence_factors', {})
visual_health = confidence_factors.get('visual_health', {})
hrqol_factor = confidence_factors.get('hrqol_factor', 0)
gait_factor = confidence_factors.get('gait_factor', 0)
total_health_impact = confidence_factors.get('total_health_impact', 0)
prediction_confidence = confidence_factors.get('prediction_confidence', 0.5)
factors_info = f"""<div style="background: #f8f9fa; border-radius: 8px; padding: 10px; margin: 10px 0;">
<p style="margin: 5px 0; font-size: 0.9em; color: #555;"><strong>Advanced Analysis Factors:</strong></p>
<p style="margin: 2px 0; font-size: 0.8em; color: #666;">β’ Visual Health Factor: {visual_health.get('age_factor', 0):.3f}</p>
<p style="margin: 2px 0; font-size: 0.8em; color: #666;">β’ HRQOL Adjustment: {hrqol_factor:.3f}</p>
<p style="margin: 2px 0; font-size: 0.8em; color: #666;">β’ Gait Factor: {gait_factor:.3f}</p>
<p style="margin: 2px 0; font-size: 0.8em; color: #666;">β’ Total Health Impact: {total_health_impact:.3f}</p>
<p style="margin: 2px 0; font-size: 0.8em; color: #666;">β’ Prediction Confidence: {prediction_confidence:.1%}</p>
</div>"""
report_html += f"""
<div style="border: 2px solid #333333; padding: 20px; border-radius: 12px; margin: 20px 0; background: #ffffff; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
<h3 style="color: #000000; margin: 0 0 15px 0; font-weight: 700; border-bottom: 2px solid #333333; padding-bottom: 8px;">{input_type_icon} Advanced Visual Analysis</h3>
<p style="margin: 8px 0; color: #000000; font-weight: 500;"><strong style="color: #000000;">Detected Breed:</strong> <span style="color: #000000; font-weight: 700;">{breed_info['breed']}</span> <span style="background: #333333; color: #ffffff; padding: 2px 6px; border-radius: 8px; font-size: 0.9em;">({breed_info['confidence']:.1%} confidence)</span></p>
<p style="margin: 8px 0; color: #000000; font-weight: 500;"><strong style="color: #000000;">Enhanced Biological Age:</strong> <span style="color: #000000; font-weight: 700;">{breed_info['bio_age']} Β± {breed_info.get('uncertainty', 0):.1f} years</span></p>
<p style="margin: 8px 0; color: #000000; font-weight: 500;"><strong style="color: #000000;">Chronological Age:</strong> <span style="color: #000000; font-weight: 700;">{age or 'Not provided'} years</span></p>
{vision_quality_info}
{pace_info}
{factors_info}
{uncertainty_info}
</div>
"""
# Enhanced video analysis
if video_features:
report_html += f"""
<div style="border: 2px solid #333333; padding: 20px; border-radius: 12px; margin: 20px 0; background: #ffffff; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
<h3 style="color: #000000; margin: 0 0 15px 0; font-weight: 700; border-bottom: 2px solid #333333; padding-bottom: 8px;">π₯ Advanced Gait & Movement Analysis</h3>
<p style="margin: 8px 0; color: #000000; font-weight: 500;"><strong style="color: #000000;">Duration:</strong> <span style="color: #000000; font-weight: 700;">{video_features['duration_sec']} seconds</span></p>
<p style="margin: 8px 0; color: #000000; font-weight: 500;"><strong style="color: #000000;">Mobility Assessment:</strong> <span style="color: #000000; font-weight: 700;">{video_features['mobility_assessment']}</span></p>
<p style="margin: 8px 0; color: #000000; font-weight: 500;"><strong style="color: #000000;">Comfort Assessment:</strong> <span style="color: #000000; font-weight: 700;">{video_features['comfort_assessment']}</span></p>
<p style="margin: 8px 0; color: #000000; font-weight: 500;"><strong style="color: #000000;">Vitality Assessment:</strong> <span style="color: #000000; font-weight: 700;">{video_features['vitality_assessment']}</span></p>
<p style="margin: 8px 0; color: #000000; font-weight: 500;"><strong style="color: #000000;">Enhanced Analysis:</strong> <span style="color: #000000; font-weight: 700;">{video_features['frames_analyzed']} frames with age-specific movement analysis</span></p>
</div>
"""
# Physical Health Assessment with improved visibility
if health_aspects and media_type == "image":
report_html += f"""
<div style="border: 2px solid #4CAF50; padding: 20px; border-radius: 12px; margin: 20px 0; background: #ffffff; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
<h3 style="color: #2E7D32; margin: 0 0 15px 0; font-weight: 600; border-bottom: 2px solid #E8F5E8; padding-bottom: 8px;">πΈ Physical Health Assessment</h3>
"""
for aspect, data in health_aspects.items():
is_healthy = any(word in data["assessment"].lower() for word in ["healthy", "bright", "clean", "ideal"])
status_icon = "β
" if is_healthy else "β "
status_color = "#2E7D32" if is_healthy else "#F57C00"
bg_color = "#E8F5E8" if is_healthy else "#FFF3E0"
report_html += f"""
<div style="margin: 10px 0; padding: 12px; background: {bg_color}; border-radius: 8px; border-left: 4px solid {status_color};">
<p style="margin: 0; color: #333;">
<span style="font-size: 1.2em;">{status_icon}</span>
<strong style="color: {status_color};">{aspect}:</strong>
<span style="color: #333; font-weight: 500;">{data['assessment']}</span>
<span style="background: #E0E0E0; color: #424242; padding: 2px 6px; border-radius: 8px; font-size: 0.85em; margin-left: 8px;">
({data['confidence']:.1%} confidence)</span>
</p>
</div>
"""
report_html += "</div>"
# Enhanced recommendations based on advanced analysis
recommendations = []
if hrqol_scores["vitality"] < 60:
recommendations.append("π *Vitality Enhancement*: Implement graduated exercise program with monitoring")
if hrqol_scores["comfort"] < 70:
recommendations.append("π *Comfort Support*: Consider pain management and mobility aids")
if hrqol_scores["emotional_wellbeing"] < 65:
recommendations.append("π *Emotional Care*: Increase environmental enrichment and social interaction")
if hrqol_scores["alertness"] < 70:
recommendations.append("π§ *Cognitive Support*: Introduce cognitive enhancement activities")
if breed_info and breed_info.get('high_uncertainty', False):
recommendations.append("π₯ *Veterinary Consultation*: High prediction uncertainty suggests professional evaluation needed")
if breed_info and age:
pace = breed_info["bio_age"] / age
if pace > 1.3:
recommendations.append("β‘ *Accelerated Aging*: Consider comprehensive health screening and lifestyle modifications")
if recommendations:
report_html += f"""
<div style="border: 2px solid #FF9800; padding: 20px; border-radius: 12px; margin: 20px 0; background: #ffffff; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
<h3 style="color: #F57C00; margin: 0 0 15px 0; font-weight: 600; border-bottom: 2px solid #FFF3E0; padding-bottom: 8px;">π― Enhanced AI Recommendations</h3>
{''.join([f'<div style="margin: 10px 0; padding: 12px; background: #FFF8E1; border-radius: 8px; border-left: 4px solid #FF9800;"><p style="margin: 0; color: #333; font-weight: 500;">{rec}</p></div>' for rec in recommendations])}
</div>
"""
# Enhanced disclaimer with model information
report_html += """
<div style="background: #F5F5F5; border: 1px solid #E0E0E0; padding: 20px; border-radius: 8px; margin: 20px 0;">
<p style="margin: 0; font-size: 0.9em; color: #424242; line-height: 1.5;">
<strong style="color: #D32F2F;">β Important Disclaimer:</strong>
This analysis uses advanced AI models with multi-factor biological age prediction based on visual health indicators,
HRQOL correlations, and movement analysis. Results are for educational purposes only.
Always consult with a qualified veterinarian for professional medical advice and diagnosis.
</p>
<p style="margin: 10px 0 0 0; font-size: 0.8em; color: #666;">
<strong>Advanced Features:</strong> Multi-factor age prediction, breed-specific aging rates, enhanced uncertainty quantification, comprehensive health analysis
</p>
</div>
</div>
"""
yield report_html
def update_media_input(input_type):
"""Update the visibility of media inputs based on dropdown selection"""
if input_type == "Image Analysis":
return gr.update(visible=True), gr.update(visible=False)
else: # Video Analysis
return gr.update(visible=False), gr.update(visible=True)
custom_css = """
/* Enhanced gradient background - Orangish fade theme */
.gradio-container {
background: linear-gradient(135deg, #ff8a50 0%, #ff6b35 25%, #ff4500 50%, #ff8c00 75%, #ffa500 100%);
min-height: 100vh;
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
}
/* Card styling - Light orange fade background */
.input-card {
background: linear-gradient(135deg, #fff4e6 0%, #ffe4cc 100%);
border-radius: 12px;
padding: 28px;
box-shadow: 0 4px 20px rgba(255, 140, 0, 0.15);
margin: 12px;
border: 1px solid #ffb366;
color: #1a202c;
}
/* Questionnaire grid container - Orange fade design */
.questionnaire-grid {
background: linear-gradient(135deg, #fff1e6 0%, #ffe6cc 50%, #ffdbcc 100%);
border-radius: 12px;
padding: 32px;
box-shadow: 0 4px 20px rgba(255, 140, 0, 0.18);
margin: 12px;
border: 1px solid #ffb366;
color: #1a202c;
}
/* Header styling - Bold orange fade gradient */
.main-header {
background: linear-gradient(135deg, #ff6347 0%, #ff7f50 25%, #ff8c00 50%, #ffa500 75%, #ffb347 100%);
color: #ffffff;
text-align: center;
padding: 40px;
border-radius: 16px;
margin-bottom: 32px;
box-shadow: 0 8px 32px rgba(255, 140, 0, 0.3);
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
}
/* Button styling - Orange fade with depth */
.analyze-button {
background: linear-gradient(135deg, #ff6b35 0%, #ff8c00 50%, #ffa500 100%);
border: none;
color: #ffffff;
padding: 16px 32px;
font-size: 16px;
font-weight: 600;
border-radius: 12px;
cursor: pointer;
transition: all 0.3s ease;
box-shadow: 0 4px 16px rgba(255, 107, 53, 0.3);
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
}
.analyze-button:hover {
transform: translateY(-2px);
box-shadow: 0 8px 28px rgba(255, 107, 53, 0.4);
background: linear-gradient(135deg, #ff5722 0%, #ff7043 50%, #ff8a65 100%);
}
/* Grid styling for questionnaire */
.question-grid {
display: grid;
grid-template-columns: 2fr 1fr;
gap: 24px;
align-items: center;
padding: 20px 0;
border-bottom: 1px solid #ffcc99;
margin-bottom: 16px;
}
.question-grid:last-child {
border-bottom: none;
margin-bottom: 0;
}
/* Orange questionnaire text styling - UPDATED TO MATCH THEME */
.question-text {
font-size: 16px !important;
color: #e65100 !important;
line-height: 1.6 !important;
margin: 0 !important;
padding-right: 20px !important;
font-weight: 500 !important;
letter-spacing: 0.025em !important;
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif !important;
}
.question-text strong {
color: #bf360c !important;
font-weight: 600 !important;
font-size: 16px !important;
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif !important;
}
/* Dropdown styling - Orange fade theme */
.gr-dropdown {
border-radius: 8px;
border: 2px solid #ffb366;
background: linear-gradient(135deg, #fff9f5 0%, #fff4e6 100%) !important;
transition: all 0.3s ease;
font-size: 14px !important;
font-weight: 500 !important;
color: #2d3748 !important;
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif !important;
}
.gr-dropdown:focus {
border-color: #ff8c00;
box-shadow: 0 0 0 3px rgba(255, 140, 0, 0.15);
outline: none;
}
.gr-dropdown:hover {
border-color: #ff9f43;
background: linear-gradient(135deg, #fff7f0 0%, #ffede0 100%) !important;
}
/* Compact spacing */
.question-section {
margin-bottom: 24px;
}
.question-section:last-child {
margin-bottom: 0;
}
/* Professional headers with orange fade - UPDATED */
.questionnaire-grid h2 {
font-size: 28px !important;
font-weight: 700 !important;
color: #d84315 !important;
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif !important;
}
.questionnaire-grid p {
font-size: 16px !important;
color: #ff6f00 !important;
font-weight: 400 !important;
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif !important;
}
/* Additional professional styling with orange fade */
.gr-textbox, .gr-number {
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif !important;
color: #2d3748 !important;
background: linear-gradient(135deg, #fff9f5 0%, #fff4e6 100%) !important;
border: 2px solid #ffb366 !important;
border-radius: 8px !important;
transition: all 0.3s ease !important;
}
.gr-textbox:focus, .gr-number:focus {
border-color: #ff8c00 !important;
box-shadow: 0 0 0 3px rgba(255, 140, 0, 0.15) !important;
outline: none !important;
}
.gr-textbox:hover, .gr-number:hover {
border-color: #ff9f43 !important;
background: linear-gradient(135deg, #fff7f0 0%, #ffede0 100%) !important;
}
/* Labels styling - UPDATED TO ORANGE */
label {
color: #e65100 !important;
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif !important;
font-weight: 500 !important;
font-size: 14px !important;
margin-bottom: 8px !important;
}
/* Media input styling with orange fade */
.gr-image, .gr-video {
border-radius: 12px !important;
border: 2px solid #ffb366 !important;
background: linear-gradient(135deg, #fff9f5 0%, #fff4e6 100%) !important;
}
/* Additional modern touches with orange fade */
.gr-group {
background: transparent !important;
border: none !important;
}
.gr-panel {
background: linear-gradient(135deg, #fff9f5 0%, #fff4e6 100%) !important;
border: 1px solid #ffb366 !important;
border-radius: 12px !important;
}
"""
# Updated Gradio Interface with Orange Questionnaire Font
with gr.Blocks(
title="πΆ Enhanced AI Dog Health Analyzer",
theme=gr.themes.Soft(
primary_hue="orange",
secondary_hue="amber",
neutral_hue="slate",
font=["Inter", "system-ui", "sans-serif"]
),
css=custom_css
) as demo:
# Main Header with Orange Fade
gr.HTML("""
<div class="main-header">
<h1 style="margin: 0; font-size: 2.8em; color: #ffffff; font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif; font-weight: 700; text-shadow: 2px 2px 4px rgba(0,0,0,0.2);">
πΎ PAWSYears - Every Dog has 20 Years Potential
</h1>
<p style="margin: 20px 0 0 0; font-size: 1.3em; color: #ffffff; font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif; opacity: 0.95; text-shadow: 1px 1px 2px rgba(0,0,0,0.2);">
Your Companion's Next-Gen Health Intelligence Platform
</p>
</div>
""")
with gr.Row():
# Left Column - Enhanced Media Input
with gr.Column(scale=1):
gr.HTML("""
<div class="input-card">
<h2 style="color: #d84315; margin: 0 0 24px 0; text-align: center; font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif; font-weight: 600;">
πΈ Media Input Selection
</h2>
</div>
""")
# Enhanced dropdown with better styling
input_type_dropdown = gr.Dropdown(
choices=["Image Analysis", "Video Analysis"],
label="π Select Analysis Type",
value="Image Analysis",
interactive=True,
elem_classes=["gr-dropdown"]
)
# Media input components with enhanced labels
image_input = gr.Image(
type="pil",
label="π· Upload Dog Photo or Use Webcam",
visible=True,
sources=["upload", "webcam"],
height=320
)
video_input = gr.Video(
label="π₯ Upload Video (10-30 seconds) or Record with Webcam",
visible=False,
sources=["upload", "webcam"],
height=320
)
# Update visibility based on dropdown selection
input_type_dropdown.change(
fn=update_media_input,
inputs=[input_type_dropdown],
outputs=[image_input, video_input]
)
breed_input = gr.Dropdown(
STANFORD_BREEDS,
label="π Dog Breed (Auto-detected if not specified)",
value=None,
allow_custom_value=True,
elem_classes=["gr-dropdown"]
)
age_input = gr.Number(
label="π
Chronological Age (years)",
precision=1,
value=None,
minimum=0,
maximum=25
)
# Right Column - Orange Font HRQOL Questionnaire
with gr.Column(scale=1):
gr.HTML("""
<div class="questionnaire-grid">
<h2 style="color: #d84315; margin: 0 0 16px 0; text-align: center; font-size: 28px; font-weight: 700; font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;">
π Health Assessment
</h2>
<p style="text-align: center; color: #ff6f00; font-style: italic; margin-bottom: 28px; font-size: 16px; font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;">
Complete all questions for comprehensive healthspan analysis
</p>
""")
hrqol_inputs = []
# Create compact grid layout with orange text
with gr.Group(elem_classes=["question-section"]):
for domain_key, domain_data in HRQOL_QUESTIONNAIRE.items():
for i, question in enumerate(domain_data["questions"]):
with gr.Row():
with gr.Column(scale=2):
gr.HTML(f"""
<div class="question-text">
<strong>Q{len(hrqol_inputs)+1}:</strong> {question["text"]}
</div>
""")
with gr.Column(scale=1):
dropdown = gr.Dropdown(
choices=question["options"],
label="",
value=None,
interactive=True,
show_label=False,
elem_classes=["gr-dropdown"]
)
hrqol_inputs.append(dropdown)
gr.HTML("</div>") # Close questionnaire-grid
# Enhanced Analysis Button
gr.HTML("""
<div style="text-align: center; margin: 40px 0;">
""")
analyze_button = gr.Button(
"π¬ Run Advanced AI Health Analysis",
variant="primary",
size="lg",
elem_classes=["analyze-button"]
)
gr.HTML("</div>")
# Enhanced Results Section
output_report = gr.HTML()
# Connect analysis function with loading
analyze_button.click(
fn=comprehensive_healthspan_analysis,
inputs=[input_type_dropdown, image_input, video_input, breed_input, age_input] + hrqol_inputs,
outputs=output_report
)
# Launch the interface
if __name__ == "__main__":
demo.launch()
|