Spaces:
Running
Running
File size: 48,628 Bytes
2b18b2c 45d6af3 c1ad2a1 45d6af3 b871fd6 bb04c63 a953180 0095ae9 6a8393c d7b6536 6a8393c a953180 0095ae9 2c223b3 0095ae9 2c223b3 0095ae9 2c223b3 0095ae9 2c223b3 0095ae9 2c223b3 0095ae9 d7b6536 0095ae9 d7b6536 0095ae9 2c223b3 0095ae9 2c223b3 0095ae9 2c223b3 0095ae9 2c223b3 0095ae9 2c223b3 0095ae9 2c223b3 0095ae9 2c223b3 0095ae9 2c223b3 0095ae9 2c223b3 0095ae9 2c223b3 0095ae9 2c223b3 0095ae9 d7b6536 809cdad a9bf7b9 2c223b3 0095ae9 a953180 0095ae9 a953180 0095ae9 a953180 12d0eea 2c223b3 6a8393c a953180 0095ae9 a953180 0095ae9 2c223b3 0095ae9 a953180 0095ae9 2c223b3 0095ae9 2c223b3 0095ae9 2c223b3 0095ae9 a953180 0095ae9 a953180 2c223b3 0095ae9 71e2885 0095ae9 71e2885 0095ae9 2c223b3 0095ae9 a953180 0095ae9 a953180 0095ae9 a953180 2c223b3 12d0eea d7b6536 2c223b3 a953180 d7b6536 0095ae9 d7b6536 a953180 0095ae9 2c223b3 0095ae9 2c223b3 0095ae9 71e2885 0095ae9 71e2885 0095ae9 2c223b3 71e2885 2c223b3 0095ae9 71e2885 0095ae9 71e2885 2c223b3 0095ae9 71e2885 0095ae9 71e2885 2c223b3 0095ae9 71e2885 2c223b3 0095ae9 71e2885 2c223b3 0095ae9 71e2885 2c223b3 0095ae9 71e2885 0095ae9 71e2885 0095ae9 71e2885 2c223b3 0095ae9 71e2885 0095ae9 71e2885 0095ae9 2c223b3 0095ae9 2c223b3 0095ae9 2c223b3 71e2885 2c223b3 71e2885 0095ae9 71e2885 2c223b3 0095ae9 71e2885 0095ae9 71e2885 2c223b3 0095ae9 71e2885 0095ae9 71e2885 2c223b3 0095ae9 71e2885 0095ae9 2c223b3 0095ae9 2c223b3 0095ae9 2c223b3 0095ae9 71e2885 2c223b3 0095ae9 71e2885 0095ae9 2c223b3 0095ae9 71e2885 0095ae9 71e2885 2c223b3 0095ae9 71e2885 0095ae9 71e2885 2c223b3 0095ae9 71e2885 0095ae9 71e2885 2c223b3 0095ae9 71e2885 2c223b3 0095ae9 71e2885 2c223b3 0095ae9 71e2885 0095ae9 71e2885 0095ae9 2c223b3 0095ae9 71e2885 2c223b3 0095ae9 2c223b3 0095ae9 2c223b3 71e2885 a953180 45d6af3 a953180 0095ae9 a953180 0095ae9 a953180 2c223b3 a953180 0095ae9 809cdad 0095ae9 809cdad 0095ae9 809cdad a953180 0095ae9 2c223b3 0095ae9 a953180 809cdad a953180 809cdad a953180 0095ae9 a953180 809cdad a953180 809cdad a953180 0095ae9 a953180 2c223b3 d7b6536 0095ae9 2c223b3 d7b6536 809cdad d7b6536 0095ae9 809cdad d7b6536 0095ae9 d7b6536 b871fd6 1b33af5 71e2885 1b33af5 260f3d0 1b33af5 f5f80ba 1b33af5 71e2885 1b33af5 260f3d0 3226415 71e2885 260f3d0 3226415 b871fd6 3226415 b871fd6 260f3d0 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 260f3d0 3226415 260f3d0 3226415 71e2885 3226415 260f3d0 3226415 260f3d0 b871fd6 3226415 260f3d0 b871fd6 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 d7b6536 71e2885 d7b6536 71e2885 d7b6536 2e65f0b d7b6536 2e65f0b d7b6536 b0490f8 a953180 bb04c63 45d6af3 b871fd6 a953180 2b5f1d4 d7b6536 b871fd6 2c223b3 b871fd6 2b5f1d4 b871fd6 d7b6536 bb04c63 d7b6536 bb04c63 d7b6536 2b5f1d4 5cfae69 2c223b3 5cfae69 2c223b3 5cfae69 2c223b3 5cfae69 2c223b3 a953180 5cfae69 b871fd6 5cfae69 b871fd6 5cfae69 82fb410 5cfae69 b871fd6 6239bbc a0d49a3 6239bbc 809cdad b871fd6 809cdad 45d6af3 b871fd6 a953180 1b33af5 a953180 1b33af5 b871fd6 1b33af5 b871fd6 b0490f8 a953180 82fb410 b0490f8 b871fd6 a953180 2b5f1d4 1b33af5 b871fd6 2b5f1d4 b871fd6 c1ad2a1 89450f2 c1ad2a1 07cdc1e 45d6af3 6a8393c a7360b6 89450f2 b871fd6 a7360b6 b871fd6 07cdc1e b871fd6 d7b6536 45d6af3 a0cad87 1b33af5 12d0eea 07cdc1e e1d6be0 45d6af3 0f570bc e52dbe4 07cdc1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 |
import os
import gradio as gr
import gradio.blocks
import re
import pandas as pd
from io import StringIO
import rdkit
from rdkit import Chem
from rdkit.Chem import AllChem, Draw
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from io import BytesIO
import tempfile
from rdkit import Chem
class PeptideAnalyzer:
def __init__(self):
self.bond_patterns = [
#(r'OC\(=O\)', 'ester'), # Ester bond
(r'N\(C\)C\(=O\)', 'n_methyl'), # N-methylated peptide bond
(r'N[0-9]C\(=O\)', 'proline'), # Proline peptide bond
(r'NC\(=O\)', 'peptide'), # Standard peptide bond
(r'C\(=O\)N\(C\)', 'n_methyl_reverse'), # Reverse N-methylated
(r'C\(=O\)N[12]?', 'peptide_reverse') # Reverse peptide bond
]
self.complex_residue_patterns = [
# Kpg - Lys(palmitoyl-Glu-OtBu) - Exact pattern for the specific structure
(r'\[C[@]H\]\(CCCNC\(=O\)CCC\[C@@H\]\(NC\(=O\)CCCCCCCCCCCCCCCC\)C\(=O\)OC\(C\)\(C\)C\)', 'Kpg'),
(r'CCCCCCCCCCCCCCCCC\(=O\)N\[C@H\]\(CCCC\(=O\)NCCC\[C@@H\]', 'Kpg'),
(r'\[C@*H\]\(CSC\(c\d+ccccc\d+\)\(c\d+ccccc\d+\)c\d+ccc\(OC\)cc\d+\)', 'Cmt'),
(r'CSC\(c.*?c.*?OC\)', 'Cmt'), # Core structure of Cys-Mmt group
(r'COc.*?ccc\(C\(SC', 'Cmt'), # Start of Cmt in cyclic peptides
(r'c2ccccc2\)c2ccccc2\)cc', 'Cmt'), # End of Cmt in cyclic peptides
# Glu(OAll) - Only match the complete pattern to avoid partial matches
(r'C=CCOC\(=O\)CC\[C@@H\]', 'Eal'),
(r'\(C\)OP\(=O\)\(O\)OCc\d+ccccc\d+', 'Tpb'),
#(r'COc\d+ccc\(C\(SC\[C@@H\]\d+.*?\)\(c\d+ccccc\d+\)c\d+ccccc\d+\)cc\d+', 'Cmt-cyclic'),
# Dtg - Asp(OtBu)-(Dmb)Gly - Full pattern
(r'CN\(Cc\d+ccc\(OC\)cc\d+OC\)C\(=O\)\[C@H\]\(CC\(=O\)OC\(C\)\(C\)C\)', 'Dtg'),
(r'C\(=O\)N\(CC\d+=C\(C=C\(C=C\d+\)OC\)OC\)CC\(=O\)', 'Dtg'),
(r'N\[C@@H\]\(CC\(=O\)OC\(C\)\(C\)C\)C\(=O\)N\(CC\d+=C\(C=C\(C=C\d+\)OC\)OC\)CC\(=O\)', 'Dtg'),
]
# Three to one letter code mapping
self.three_to_one = {
'Ala': 'A', 'Cys': 'C', 'Asp': 'D', 'Glu': 'E',
'Phe': 'F', 'Gly': 'G', 'His': 'H', 'Ile': 'I',
'Lys': 'K', 'Leu': 'L', 'Met': 'M', 'Asn': 'N',
'Pro': 'P', 'Gln': 'Q', 'Arg': 'R', 'Ser': 'S',
'Thr': 'T', 'Val': 'V', 'Trp': 'W', 'Tyr': 'Y',
'ala': 'a', 'cys': 'c', 'asp': 'd', 'glu': 'e',
'phe': 'f', 'gly': 'g', 'his': 'h', 'ile': 'i',
'lys': 'k', 'leu': 'l', 'met': 'm', 'asn': 'n',
'pro': 'p', 'gln': 'q', 'arg': 'r', 'ser': 's',
'thr': 't', 'val': 'v', 'trp': 'w', 'tyr': 'y', 'Cmt-cyclic': 'Ĉ',
'Aib': 'Ŷ', 'Dtg': 'Ĝ', 'Cmt': 'Ĉ', 'Eal': 'Ė', 'Nml': "Ŀ", 'Nma': 'Ṃ',
'Kpg': 'Ƙ', 'Tpb': 'Ṯ', 'Cyl': 'Ċ', 'Nle': 'Ł', 'Hph': 'Ĥ', 'Cys-Cys': 'CC', 'cys-cys': 'cc',
}
def preprocess_complex_residues(self, smiles):
"""Identify and protect complex residues with internal peptide bonds - improved to prevent overlaps"""
# Create a mapping of positions to complex residue types
complex_positions = []
# Search for all complex residue patterns
for pattern, residue_type in self.complex_residue_patterns:
for match in re.finditer(pattern, smiles):
# Only add if this position doesn't overlap with existing matches
if not any(pos['start'] <= match.start() < pos['end'] or
pos['start'] < match.end() <= pos['end'] for pos in complex_positions):
complex_positions.append({
'start': match.start(),
'end': match.end(),
'type': residue_type,
'pattern': match.group()
})
# Sort by position (to handle potential overlapping matches)
complex_positions.sort(key=lambda x: x['start'])
# If no complex residues found, return original SMILES
if not complex_positions:
return smiles, []
# Build a new SMILES string, protecting complex residues
preprocessed_smiles = smiles
offset = 0 # Track offset from replacements
protected_residues = []
for pos in complex_positions:
# Adjust positions based on previous replacements
start = pos['start'] + offset
end = pos['end'] + offset
# Extract the complex residue part
complex_part = preprocessed_smiles[start:end]
# Verify this is a complete residue (should have proper amino acid structure)
if not ('[C@H]' in complex_part or '[C@@H]' in complex_part):
continue # Skip if not a proper amino acid structure
# Create a placeholder for this complex residue
placeholder = f"COMPLEX_RESIDUE_{len(protected_residues)}"
# Replace the complex part with the placeholder
preprocessed_smiles = preprocessed_smiles[:start] + placeholder + preprocessed_smiles[end:]
# Track the offset change
offset += len(placeholder) - (end - start)
# Store the residue information
protected_residues.append({
'placeholder': placeholder,
'type': pos['type'],
'content': complex_part
})
#print(f"Protected {pos['type']}: {complex_part[:20]}... as {placeholder}")
return preprocessed_smiles, protected_residues
def split_on_bonds(self, smiles, protected_residues=None):
"""Split SMILES into segments based on peptide bonds, with improved handling of protected residues"""
positions = []
used = set()
# First, handle protected complex residues if any
if protected_residues:
for residue in protected_residues:
match = re.search(residue['placeholder'], smiles)
if match:
positions.append({
'start': match.start(),
'end': match.end(),
'type': 'complex',
'pattern': residue['placeholder'],
'residue_type': residue['type'],
'content': residue['content']
})
used.update(range(match.start(), match.end()))
# Find all peptide bonds
bond_positions = []
# Find Gly pattern first
gly_pattern = r'NCC\(=O\)'
for match in re.finditer(gly_pattern, smiles):
if not any(p in range(match.start(), match.end()) for p in used):
bond_positions.append({
'start': match.start(),
'end': match.end(),
'type': 'gly',
'pattern': match.group()
})
used.update(range(match.start(), match.end()))
# Then find all other bonds
for pattern, bond_type in self.bond_patterns:
for match in re.finditer(pattern, smiles):
if not any(p in range(match.start(), match.end()) for p in used):
bond_positions.append({
'start': match.start(),
'end': match.end(),
'type': bond_type,
'pattern': match.group()
})
used.update(range(match.start(), match.end()))
# Sort all positions
bond_positions.sort(key=lambda x: x['start'])
# Combine complex residue positions and bond positions
all_positions = positions + bond_positions
all_positions.sort(key=lambda x: x['start'])
# Create segments
segments = []
# First segment (if not starting with a bond or complex residue)
if all_positions and all_positions[0]['start'] > 0:
segments.append({
'content': smiles[0:all_positions[0]['start']],
'bond_after': all_positions[0]['pattern'] if all_positions[0]['type'] != 'complex' else None,
'complex_after': all_positions[0]['pattern'] if all_positions[0]['type'] == 'complex' else None
})
# Process segments between positions
for i in range(len(all_positions)-1):
current = all_positions[i]
next_pos = all_positions[i+1]
# Handle complex residues
if current['type'] == 'complex':
segments.append({
'content': current['content'],
'bond_before': all_positions[i-1]['pattern'] if i > 0 and all_positions[i-1]['type'] != 'complex' else None,
'bond_after': next_pos['pattern'] if next_pos['type'] != 'complex' else None,
'complex_type': current['residue_type']
})
# Handle regular bonds
elif current['type'] == 'gly':
segments.append({
'content': 'NCC(=O)',
'bond_before': all_positions[i-1]['pattern'] if i > 0 and all_positions[i-1]['type'] != 'complex' else None,
'bond_after': next_pos['pattern'] if next_pos['type'] != 'complex' else None
})
else:
# Only create segment if there's content between this bond and next position
content = smiles[current['end']:next_pos['start']]
if content and next_pos['type'] != 'complex':
segments.append({
'content': content,
'bond_before': current['pattern'],
'bond_after': next_pos['pattern'] if next_pos['type'] != 'complex' else None
})
# Last segment
if all_positions and all_positions[-1]['end'] < len(smiles):
if all_positions[-1]['type'] == 'complex':
segments.append({
'content': all_positions[-1]['content'],
'bond_before': all_positions[-2]['pattern'] if len(all_positions) > 1 and all_positions[-2]['type'] != 'complex' else None,
'complex_type': all_positions[-1]['residue_type']
})
else:
segments.append({
'content': smiles[all_positions[-1]['end']:],
'bond_before': all_positions[-1]['pattern']
})
return segments
def is_peptide(self, smiles):
"""Check if the SMILES represents a peptide structure"""
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return False
# Look for peptide bonds: NC(=O) pattern
peptide_bond_pattern = Chem.MolFromSmarts('[NH][C](=O)')
if mol.HasSubstructMatch(peptide_bond_pattern):
return True
# Look for N-methylated peptide bonds: N(C)C(=O) pattern
n_methyl_pattern = Chem.MolFromSmarts('[N;H0;$(NC)](C)[C](=O)')
if mol.HasSubstructMatch(n_methyl_pattern):
return True
return False
def is_cyclic(self, smiles):
"""Improved cyclic peptide detection"""
# Check for C-terminal carboxyl
if smiles.endswith('C(=O)O'):
return False, [], []
# Find all numbers used in ring closures
ring_numbers = re.findall(r'(?:^|[^c])[0-9](?=[A-Z@\(\)])', smiles)
# Find aromatic ring numbers
aromatic_matches = re.findall(r'c[0-9](?:ccccc|c\[nH\]c)[0-9]', smiles)
aromatic_cycles = []
for match in aromatic_matches:
numbers = re.findall(r'[0-9]', match)
aromatic_cycles.extend(numbers)
# Numbers that aren't part of aromatic rings are peptide cycles
peptide_cycles = [n for n in ring_numbers if n not in aromatic_cycles]
is_cyclic = len(peptide_cycles) > 0 and not smiles.endswith('C(=O)O')
return is_cyclic, peptide_cycles, aromatic_cycles
def clean_terminal_carboxyl(self, segment):
"""Remove C-terminal carboxyl only if it's the true terminus"""
content = segment['content']
# Only clean if:
# 1. Contains C(=O)O
# 2. No bond_after exists (meaning it's the last segment)
if 'C(=O)O' in content and not segment.get('bond_after'):
# Remove C(=O)O pattern regardless of position
cleaned = re.sub(r'\(C\(=O\)O\)', '', content)
# Remove any leftover empty parentheses
cleaned = re.sub(r'\(\)', '', cleaned)
return cleaned
return content
def identify_residue(self, segment):
"""Identify residue with Pro reconstruction"""
# Only clean terminal carboxyl if this is the last segment
if 'complex_type' in segment:
return segment['complex_type'], []
content = self.clean_terminal_carboxyl(segment)
mods = self.get_modifications(segment)
if content.startswith('COc1ccc(C(SC[C@@H]'):
print("DIRECT MATCH: Found Cmt at beginning")
return 'Cmt', mods
# VERY EXPLICIT check for the last segment in your example
if '[C@@H]3CCCN3C2=O)(c2ccccc2)c2ccccc2)cc' in content:
print("DIRECT MATCH: Found Pro at end")
return 'Pro', mods
# === Original amino acid patterns ===
# Eal - Glu(OAll) - Multiple patterns
if 'CCC(=O)OCC=C' in content or 'CC(=O)OCC=C' in content or 'C=CCOC(=O)CC' in content:
return 'Eal', mods
# Proline (P) - flexible ring numbers
if any([
# Check for any ring number in bond patterns
(segment.get('bond_after', '').startswith(f'N{n}C(=O)') and 'CCC' in content and
any(f'[C@@H]{n}' in content or f'[C@H]{n}' in content for n in '123456789'))
for n in '123456789'
]) or any([(segment.get('bond_before', '').startswith(f'C(=O)N{n}') and 'CCC' in content and
any(f'CCC{n}' for n in '123456789'))
for n in '123456789'
]) or any([
# Check ending patterns with any ring number
(f'CCCN{n}' in content and content.endswith('=O') and
any(f'[C@@H]{n}' in content or f'[C@H]{n}' in content for n in '123456789'))
for n in '123456789'
]) or any([
# Handle CCC[C@H]n patterns
(content == f'CCC[C@H]{n}' and segment.get('bond_before', '').startswith(f'C(=O)N{n}')) or
(content == f'CCC[C@@H]{n}' and segment.get('bond_before', '').startswith(f'C(=O)N{n}')) or
# N-terminal Pro with any ring number
(f'N{n}CCC[C@H]{n}' in content) or
(f'N{n}CCC[C@@H]{n}' in content)
for n in '123456789'
]):
return 'Pro', mods
# D-Proline (p)
if ('N1[C@H](CCC1)' in content):
return 'pro', mods
# Tryptophan (W) - more specific indole pattern
if re.search(r'c[0-9]c\[nH\]c[0-9]ccccc[0-9][0-9]', content) and \
'c[nH]c' in content.replace(' ', ''):
# Check stereochemistry for D/L
if '[C@H](CC' in content: # D-form
return 'trp', mods
return 'Trp', mods
# Lysine (K) - both patterns
if '[C@@H](CCCCN)' in content or '[C@H](CCCCN)' in content:
# Check stereochemistry for D/L
if '[C@H](CCCCN)' in content: # D-form
return 'lys', mods
return 'Lys', mods
# Arginine (R) - both patterns
if '[C@@H](CCCNC(=N)N)' in content or '[C@H](CCCNC(=N)N)' in content:
# Check stereochemistry for D/L
if '[C@H](CCCNC(=N)N)' in content: # D-form
return 'arg', mods
return 'Arg', mods
# Regular residue identification
if content == 'C' and segment.get('bond_before') and segment.get('bond_after'):
# If it's surrounded by peptide bonds, it's almost certainly Gly
if ('C(=O)N' in segment['bond_before'] or 'NC(=O)' in segment['bond_before'] or 'N(C)C(=O)' in segment['bond_before']) and \
('NC(=O)' in segment['bond_after'] or 'C(=O)N' in segment['bond_after'] or 'N(C)C(=O)' in segment['bond_after']):
return 'Gly', mods
# Case 2: Cyclic terminal glycine - typically contains 'CNC' with ring closure
if 'CNC' in content and any(f'C{i}=' in content for i in range(1, 10)):
return 'Gly', mods # This will catch patterns like 'CNC1=O'
if not segment.get('bond_before') and segment.get('bond_after'):
if content == 'C' or content == 'NC':
if ('NC(=O)' in segment['bond_after'] or 'C(=O)N' in segment['bond_after'] or 'N(C)C(=O)' in segment['bond_after']):
return 'Gly', mods
# Leucine patterns (L/l)
if 'CC(C)C[C@H]' in content or 'CC(C)C[C@@H]' in content or '[C@@H](CC(C)C)' in content or '[C@H](CC(C)C)' in content or (('N[C@H](CCC(C)C)' in content or 'N[C@@H](CCC(C)C)' in content) and segment.get('bond_before') is None):
# Check stereochemistry for D/L
if '[C@H](CC(C)C)' in content or 'CC(C)C[C@H]' in content: # D-form
return 'leu', mods
return 'Leu', mods
# Threonine patterns (T/t)
if '[C@@H]([C@@H](C)O)' in content or '[C@H]([C@H](C)O)' in content or '[C@@H]([C@H](C)O)' in content or '[C@H]([C@@H](C)O)' in content:
# Check both stereochemistry patterns
if '[C@H]([C@@H](C)O)' in content: # D-form
return 'thr', mods
return 'Thr', mods
if re.search(r'\[C@H\]\(CCc\d+ccccc\d+\)', content) or re.search(r'\[C@@H\]\(CCc\d+ccccc\d+\)', content):
return 'Hph', mods
# Phenylalanine patterns (F/f)
if re.search(r'\[C@H\]\(Cc\d+ccccc\d+\)', content) or re.search(r'\[C@@H\]\(Cc\d+ccccc\d+\)', content):
# Check stereochemistry for D/L
if re.search(r'\[C@H\]\(Cc\d+ccccc\d+\)', content): # D-form
return 'phe', mods
return 'Phe', mods
if ('CC(C)[C@@H]' in content or 'CC(C)[C@H]' in content or
'[C@H](C(C)C)' in content or '[C@@H](C(C)C)' in content or
'C(C)C[C@H]' in content or 'C(C)C[C@@H]' in content):
# Make sure it's not leucine
if not any(p in content for p in ['CC(C)C[C@H]', 'CC(C)C[C@@H]', 'CCC(=O)']):
# Check stereochemistry
if '[C@H]' in content and not '[C@@H]' in content: # D-form
return 'val', mods
return 'Val', mods
# Isoleucine patterns (I/i)
# First check for various isoleucine patterns while excluding valine
if (any(['CC[C@@H](C)' in content, '[C@@H](C)CC' in content, '[C@@H](CC)C' in content,
'C(C)C[C@@H]' in content, '[C@@H]([C@H](C)CC)' in content, '[C@H]([C@@H](C)CC)' in content,
'[C@@H]([C@@H](C)CC)' in content, '[C@H]([C@H](C)CC)' in content,
'C[C@H](CC)[C@@H]' in content, 'C[C@@H](CC)[C@H]' in content,
'C[C@H](CC)[C@H]' in content, 'C[C@@H](CC)[C@@H]' in content,
'CC[C@H](C)[C@@H]' in content, 'CC[C@@H](C)[C@H]' in content,
'CC[C@H](C)[C@H]' in content, 'CC[C@@H](C)[C@@H]' in content])
and 'CC(C)C' not in content): # Exclude valine pattern
# Check stereochemistry for D/L forms
if any(['[C@H]([C@@H](CC)C)' in content, '[C@H](CC)C' in content,
'[C@H]([C@@H](C)CC)' in content, '[C@H]([C@H](C)CC)' in content,
'C[C@@H](CC)[C@H]' in content, 'C[C@H](CC)[C@H]' in content,
'CC[C@@H](C)[C@H]' in content, 'CC[C@H](C)[C@H]' in content]):
# D-form
return 'ile', mods
# All other stereochemistries are treated as L-form
return 'Ile', mods
# Tpb - Thr(PO(OBzl)OH) - Multiple patterns
if re.search(r'\(C\)OP\(=O\)\(O\)OCc[0-9]ccccc[0-9]', content) or 'OP(=O)(O)OCC' in content:
return 'Tpb', mods
# Alanine patterns (A/a)
if ('[C@H](C)' in content or '[C@@H](C)' in content):
if not any(p in content for p in ['C(C)C', 'COC', 'CN(', 'C(C)O', 'CC[C@H]', 'CC[C@@H]']):
# Check stereochemistry for D/L
if '[C@H](C)' in content: # D-form
return 'ala', mods
return 'Ala', mods
# Tyrosine patterns (Y/y)
if re.search(r'Cc[0-9]ccc\(O\)cc[0-9]', content):
# Check stereochemistry for D/L
if '[C@H](Cc1ccc(O)cc1)' in content: # D-form
return 'tyr', mods
return 'Tyr', mods
# Serine patterns (S/s)
if '[C@H](CO)' in content or '[C@@H](CO)' in content:
if not ('C(C)O' in content or 'COC' in content):
# Check stereochemistry for D/L
if '[C@H](CO)' in content: # D-form
return 'ser', mods
return 'Ser', mods
if 'CSSC' in content:
# Check for various cysteine-cysteine bridge patterns
if re.search(r'\[C@@H\].*CSSC.*\[C@@H\]', content) or re.search(r'\[C@H\].*CSSC.*\[C@H\]', content):
if '[C@H]' in content and not '[C@@H]' in content: # D-form
return 'cys-cys', mods
return 'Cys-Cys', mods
# Pattern for cysteine with N-terminal amine group
if '[C@@H](N)CSSC' in content or '[C@H](N)CSSC' in content:
if '[C@H](N)CSSC' in content: # D-form
return 'cys-cys', mods
return 'Cys-Cys', mods
# Pattern for cysteine with C-terminal carboxyl
if 'CSSC[C@@H](C(=O)O)' in content or 'CSSC[C@H](C(=O)O)' in content:
if 'CSSC[C@H](C(=O)O)' in content: # D-form
return 'cys-cys', mods
return 'Cys-Cys', mods
# Cysteine patterns (C/c)
if '[C@H](CS)' in content or '[C@@H](CS)' in content:
# Check stereochemistry for D/L
if '[C@H](CS)' in content: # D-form
return 'cys', mods
return 'Cys', mods
# Methionine patterns (M/m)
if ('CCSC' in content) or ("CSCC" in content):
# Check stereochemistry for D/L
if '[C@H](CCSC)' in content: # D-form
return 'met', mods
elif '[C@H]' in content:
return 'met', mods
return 'Met', mods
# Glutamine patterns (Q/q)
if (content == '[C@@H](CC' or content == '[C@H](CC' and segment.get('bond_before')=='C(=O)N' and segment.get('bond_after')=='C(=O)N') or ('CCC(=O)N' in content) or ('CCC(N)=O' in content):
# Check stereochemistry for D/L
if '[C@H](CCC(=O)N)' in content: # D-form
return 'gln', mods
return 'Gln', mods
# Asparagine patterns (N/n)
if (content == '[C@@H](C' or content == '[C@H](C' and segment.get('bond_before')=='C(=O)N' and segment.get('bond_after')=='C(=O)N') or ('CC(=O)N' in content) or ('CCN(=O)' in content) or ('CC(N)=O' in content):
# Check stereochemistry for D/L
if '[C@H](CC(=O)N)' in content: # D-form
return 'asn', mods
return 'Asn', mods
# Glutamic acid patterns (E/e)
if ('CCC(=O)O' in content):
# Check stereochemistry for D/L
if '[C@H](CCC(=O)O)' in content: # D-form
return 'glu', mods
return 'Glu', mods
# Aspartic acid patterns (D/d)
if ('CC(=O)O' in content):
# Check stereochemistry for D/L
if '[C@H](CC(=O)O)' in content: # D-form
return 'asp', mods
return 'Asp', mods
if re.search(r'Cc\d+c\[nH\]cn\d+', content) or re.search(r'Cc\d+cnc\[nH\]\d+', content):
# Check stereochemistry for D/L
if '[C@H]' in content: # D-form
return 'his', mods
return 'His', mods
if 'C2(CCCC2)' in content or 'C1(CCCC1)' in content or re.search(r'C\d+\(CCCC\d+\)', content):
return 'Cyl', mods
if ('N[C@@H](CCCC)' in content or '[C@@H](CCCC)' in content or 'CCCC[C@@H]' in content or
'N[C@H](CCCC)' in content or '[C@H](CCCC)' in content) and 'CC(C)' not in content:
return 'Nle', mods
# Aib - alpha-aminoisobutyric acid (2-aminoisobutyric acid)
# More flexible pattern detection
if 'C(C)(C)(N)' in content:
return 'Aib', mods
# Partial Aib pattern but NOT part of t-butyl ester
if 'C(C)(C)' in content and 'OC(C)(C)C' not in content:
if (segment.get('bond_before') and segment.get('bond_after') and
any(bond in segment['bond_before'] for bond in ['C(=O)N', 'NC(=O)', 'N(C)C(=O)']) and
any(bond in segment['bond_after'] for bond in ['NC(=O)', 'C(=O)N', 'N(C)C(=O)'])):
return 'Aib', mods
# Dtg - Asp(OtBu)-(Dmb)Gly - Simplified pattern for better detection
if 'CC(=O)OC(C)(C)C' in content and 'CC1=C(C=C(C=C1)OC)OC' in content:
return 'Dtg', mods
# Kpg - Lys(palmitoyl-Glu-OtBu) - Simplified pattern
if 'CCCNC(=O)' in content and 'CCCCCCCCCCCC' in content:
return 'Kpg', mods
return None, mods
def get_modifications(self, segment):
"""Get modifications based on bond types and segment content - fixed to avoid duplicates"""
mods = []
# Check for N-methylation in any form, but only add it once
# Check both bonds and segment content for N-methylation patterns
if ((segment.get('bond_after') and
('N(C)' in segment['bond_after'] or segment['bond_after'].startswith('C(=O)N(C)'))) or
('N(C)C(=O)' in segment['content'] or 'N(C)C1=O' in segment['content']) or
(segment['content'].endswith('N(C)C(=O)') or segment['content'].endswith('N(C)C1=O'))):
mods.append('N-Me')
# Check for O-linked modifications
#if segment.get('bond_after') and 'OC(=O)' in segment['bond_after']:
#mods.append('O-linked')
return mods
def analyze_structure(self, smiles):
"""Main analysis function with preprocessing for complex residues"""
#print("\nAnalyzing structure:", smiles)
# Pre-process to identify complex residues first
preprocessed_smiles, protected_residues = self.preprocess_complex_residues(smiles)
"""
if protected_residues:
print(f"Identified {len(protected_residues)} complex residues during pre-processing")
for i, residue in enumerate(protected_residues):
print(f"Complex residue {i+1}: {residue['type']}")
"""
# Check if it's cyclic
is_cyclic, peptide_cycles, aromatic_cycles = self.is_cyclic(smiles)
# Split into segments, respecting protected residues
segments = self.split_on_bonds(preprocessed_smiles, protected_residues)
#print("\nSegment Analysis:")
sequence = []
for i, segment in enumerate(segments):
"""
print(f"\nSegment {i}:")
print(f"Content: {segment.get('content', 'None')}")
print(f"Bond before: {segment.get('bond_before', 'None')}")
print(f"Bond after: {segment.get('bond_after', 'None')}")
"""
residue, mods = self.identify_residue(segment)
if residue:
if mods:
sequence.append(f"{residue}({','.join(mods)})")
else:
sequence.append(residue)
#print(f"Identified as: {residue}")
#print(f"Modifications: {mods}")
else:
print(f"Warning: Could not identify residue in segment: {segment.get('content', 'None')}")
# Format the sequence
three_letter = '-'.join(sequence)
# Use the mapping to create one-letter code
one_letter = ''.join(self.three_to_one.get(aa.split('(')[0], 'X') for aa in sequence)
if is_cyclic:
three_letter = f"cyclo({three_letter})"
one_letter = f"cyclo({one_letter})"
"""
print(f"\nFinal sequence: {three_letter}")
print(f"One-letter code: {one_letter}")
print(f"Is cyclic: {is_cyclic}")
print(f"Peptide cycles: {peptide_cycles}")
print(f"Aromatic cycles: {aromatic_cycles}")
"""
return {
'three_letter': three_letter,
'one_letter': one_letter,
'is_cyclic': is_cyclic,
'residues': sequence
}
def annotate_cyclic_structure(mol, sequence):
"""Create structure visualization"""
AllChem.Compute2DCoords(mol)
drawer = Draw.rdMolDraw2D.MolDraw2DCairo(2000, 2000)
# Draw molecule first
drawer.drawOptions().addAtomIndices = False
drawer.DrawMolecule(mol)
drawer.FinishDrawing()
# Convert to PIL Image
img = Image.open(BytesIO(drawer.GetDrawingText()))
draw = ImageDraw.Draw(img)
try:
small_font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 60)
except OSError:
try:
small_font = ImageFont.truetype("arial.ttf", 60)
except OSError:
print("Warning: TrueType fonts not available, using default font")
small_font = ImageFont.load_default()
# Header
seq_text = f"Sequence: {sequence}"
bbox = draw.textbbox((1000, 100), seq_text, font=small_font)
padding = 10
draw.rectangle([bbox[0]-padding, bbox[1]-padding,
bbox[2]+padding, bbox[3]+padding],
fill='white', outline='white')
draw.text((1000, 100), seq_text,
font=small_font, fill='black', anchor="mm")
return img
def create_enhanced_linear_viz(sequence, smiles):
""""Linear visualization"""
analyzer = PeptideAnalyzer()
fig = plt.figure(figsize=(15, 10))
gs = fig.add_gridspec(2, 1, height_ratios=[1, 2])
ax_struct = fig.add_subplot(gs[0])
ax_detail = fig.add_subplot(gs[1])
if sequence.startswith('cyclo('):
residues = sequence[6:-1].split('-')
else:
residues = sequence.split('-')
segments = analyzer.split_on_bonds(smiles)
print(f"Number of residues: {len(residues)}")
print(f"Number of segments: {len(segments)}")
ax_struct.set_xlim(0, 10)
ax_struct.set_ylim(0, 2)
num_residues = len(residues)
spacing = 9.0 / (num_residues - 1) if num_residues > 1 else 9.0
y_pos = 1.5
for i in range(num_residues):
x_pos = 0.5 + i * spacing
rect = patches.Rectangle((x_pos-0.3, y_pos-0.2), 0.6, 0.4,
facecolor='lightblue', edgecolor='black')
ax_struct.add_patch(rect)
if i < num_residues - 1:
segment = segments[i] if i < len(segments) else None
if segment:
bond_type = 'ester' if 'O-linked' in segment.get('bond_after', '') else 'peptide'
is_n_methylated = 'N-Me' in segment.get('bond_after', '')
bond_color = 'red' if bond_type == 'ester' else 'black'
linestyle = '--' if bond_type == 'ester' else '-'
ax_struct.plot([x_pos+0.3, x_pos+spacing-0.3], [y_pos, y_pos],
color=bond_color, linestyle=linestyle, linewidth=2)
mid_x = x_pos + spacing/2
bond_label = f"{bond_type}"
if is_n_methylated:
bond_label += "\n(N-Me)"
ax_struct.text(mid_x, y_pos+0.1, bond_label,
ha='center', va='bottom', fontsize=10,
color=bond_color)
ax_struct.text(x_pos, y_pos-0.5, residues[i],
ha='center', va='top', fontsize=14)
ax_detail.set_ylim(0, len(segments)+1)
ax_detail.set_xlim(0, 1)
segment_y = len(segments)
for i, segment in enumerate(segments):
y = segment_y - i
# Check if this is a bond or residue
residue, mods = analyzer.identify_residue(segment)
if residue:
text = f"Residue {i+1}: {residue}"
if mods:
text += f" ({', '.join(mods)})"
color = 'blue'
else:
# Must be a bond
text = f"Bond {i}: "
if 'O-linked' in segment.get('bond_after', ''):
text += "ester"
elif 'N-Me' in segment.get('bond_after', ''):
text += "peptide (N-methylated)"
else:
text += "peptide"
color = 'red'
ax_detail.text(0.05, y, text, fontsize=12, color=color)
ax_detail.text(0.5, y, f"SMILES: {segment.get('content', '')}", fontsize=10, color='gray')
# If cyclic, add connection indicator
if sequence.startswith('cyclo('):
ax_struct.annotate('', xy=(9.5, y_pos), xytext=(0.5, y_pos),
arrowprops=dict(arrowstyle='<->', color='red', lw=2))
ax_struct.text(5, y_pos+0.3, 'Cyclic Connection',
ha='center', color='red', fontsize=14)
ax_struct.set_title("Peptide Structure Overview", pad=20)
ax_detail.set_title("Segment Analysis Breakdown", pad=20)
for ax in [ax_struct, ax_detail]:
ax.set_xticks([])
ax.set_yticks([])
ax.axis('off')
plt.tight_layout()
return fig
class PeptideStructureGenerator:
"""Generate 3D structures of peptides using different embedding methods"""
@staticmethod
def prepare_molecule(smiles):
"""Prepare molecule with proper hydrogen handling"""
mol = Chem.MolFromSmiles(smiles, sanitize=False)
if mol is None:
raise ValueError("Failed to create molecule from SMILES")
for atom in mol.GetAtoms():
atom.UpdatePropertyCache(strict=False)
# Sanitize with reduced requirements
Chem.SanitizeMol(mol,
sanitizeOps=Chem.SANITIZE_FINDRADICALS|
Chem.SANITIZE_KEKULIZE|
Chem.SANITIZE_SETAROMATICITY|
Chem.SANITIZE_SETCONJUGATION|
Chem.SANITIZE_SETHYBRIDIZATION|
Chem.SANITIZE_CLEANUPCHIRALITY)
mol = Chem.AddHs(mol)
return mol
@staticmethod
def get_etkdg_params(attempt=0):
"""Get ETKDG parameters"""
params = AllChem.ETKDGv3()
params.randomSeed = -1
params.maxIterations = 200
params.numThreads = 4 # Reduced for web interface
params.useBasicKnowledge = True
params.enforceChirality = True
params.useExpTorsionAnglePrefs = True
params.useSmallRingTorsions = True
params.useMacrocycleTorsions = True
params.ETversion = 2
params.pruneRmsThresh = -1
params.embedRmsThresh = 0.5
if attempt > 10:
params.bondLength = 1.5 + (attempt - 10) * 0.02
params.useExpTorsionAnglePrefs = False
return params
def generate_structure_etkdg(self, smiles, max_attempts=20):
"""Generate 3D structure using ETKDG without UFF optimization"""
success = False
mol = None
for attempt in range(max_attempts):
try:
mol = self.prepare_molecule(smiles)
params = self.get_etkdg_params(attempt)
if AllChem.EmbedMolecule(mol, params) == 0:
success = True
break
except Exception as e:
continue
if not success:
raise ValueError("Failed to generate structure with ETKDG")
return mol
def generate_structure_uff(self, smiles, max_attempts=20):
"""Generate 3D structure using ETKDG followed by UFF optimization"""
best_mol = None
lowest_energy = float('inf')
for attempt in range(max_attempts):
try:
test_mol = self.prepare_molecule(smiles)
params = self.get_etkdg_params(attempt)
if AllChem.EmbedMolecule(test_mol, params) == 0:
res = AllChem.UFFOptimizeMolecule(test_mol, maxIters=2000,
vdwThresh=10.0, confId=0,
ignoreInterfragInteractions=True)
if res == 0:
ff = AllChem.UFFGetMoleculeForceField(test_mol)
if ff:
current_energy = ff.CalcEnergy()
if current_energy < lowest_energy:
lowest_energy = current_energy
best_mol = Chem.Mol(test_mol)
except Exception:
continue
if best_mol is None:
raise ValueError("Failed to generate optimized structure")
return best_mol
@staticmethod
def mol_to_sdf_bytes(mol):
"""Convert RDKit molecule to SDF file bytes"""
sio = StringIO()
writer = Chem.SDWriter(sio)
writer.write(mol)
writer.close()
return sio.getvalue().encode('utf-8')
def process_input(
smiles_input=None,
file_obj=None,
show_linear=False,
show_segment_details=False,
generate_3d=False,
use_uff=False
):
"""Process input and create visualizations using PeptideAnalyzer"""
analyzer = PeptideAnalyzer()
temp_dir = tempfile.mkdtemp() if generate_3d else None
structure_files = []
# Handle direct SMILES input
if smiles_input:
smiles = smiles_input.strip()
if not analyzer.is_peptide(smiles):
return "Error: Input SMILES does not appear to be a peptide structure.", None, None, []
try:
# Preprocess to protect complex residues
pre_smiles, protected_residues = analyzer.preprocess_complex_residues(smiles)
# Report protected residues in summary if any
protected_info = None
if protected_residues:
protected_info = [res['type'] for res in protected_residues]
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return "Error: Invalid SMILES notation.", None, None, []
if generate_3d:
generator = PeptideStructureGenerator()
try:
# Generate ETKDG structure
mol_etkdg = generator.generate_structure_etkdg(smiles)
etkdg_path = os.path.join(temp_dir, "structure_etkdg.sdf")
writer = Chem.SDWriter(etkdg_path)
writer.write(mol_etkdg)
writer.close()
structure_files.append(etkdg_path)
# Generate UFF structure if requested
if use_uff:
mol_uff = generator.generate_structure_uff(smiles)
uff_path = os.path.join(temp_dir, "structure_uff.sdf")
writer = Chem.SDWriter(uff_path)
writer.write(mol_uff)
writer.close()
structure_files.append(uff_path)
except Exception as e:
return f"Error generating 3D structures: {str(e)}", None, None, []
analysis = analyzer.analyze_structure(smiles)
three_letter = analysis['three_letter']
one_letter = analysis['one_letter']
is_cyclic = analysis['is_cyclic']
# Only include segment analysis in output if requested
if show_segment_details:
segments = analyzer.split_on_bonds(smiles)
sequence_parts = []
output_text = ""
output_text += "Segment Analysis:\n"
for i, segment in enumerate(segments):
output_text += f"\nSegment {i}:\n"
output_text += f"Content: {segment['content']}\n"
output_text += f"Bond before: {segment.get('bond_before', 'None')}\n"
output_text += f"Bond after: {segment.get('bond_after', 'None')}\n"
residue, mods = analyzer.identify_residue(segment)
if residue:
if mods:
sequence_parts.append(f"{residue}({','.join(mods)})")
else:
sequence_parts.append(residue)
output_text += f"Identified as: {residue}\n"
output_text += f"Modifications: {mods}\n"
else:
output_text += f"Warning: Could not identify residue in segment: {segment['content']}\n"
output_text += "\n"
is_cyclic, peptide_cycles, aromatic_cycles = analyzer.is_cyclic(smiles)
three_letter = '-'.join(sequence_parts)
one_letter = ''.join(analyzer.three_to_one.get(aa.split('(')[0], 'X') for aa in sequence_parts)
else:
pass
img_cyclic = annotate_cyclic_structure(mol, three_letter)
# Create linear representation if requested
img_linear = None
if show_linear:
fig_linear = create_enhanced_linear_viz(three_letter, smiles)
buf = BytesIO()
fig_linear.savefig(buf, format='png', bbox_inches='tight', dpi=300)
buf.seek(0)
img_linear = Image.open(buf)
plt.close(fig_linear)
summary = "Summary:\n"
summary += f"Sequence: {three_letter}\n"
summary += f"One-letter code: {one_letter}\n"
summary += f"Is Cyclic: {'Yes' if is_cyclic else 'No'}\n"
#if is_cyclic:
#summary += f"Peptide Cycles: {', '.join(peptide_cycles)}\n"
#summary += f"Aromatic Cycles: {', '.join(aromatic_cycles)}\n"
if structure_files:
summary += "\n3D Structures Generated:\n"
for filepath in structure_files:
summary += f"- {os.path.basename(filepath)}\n"
#return summary, img_cyclic, img_linear, structure_files if structure_files else None
return summary, img_cyclic
except Exception as e:
#return f"Error processing SMILES: {str(e)}", None, None, []
return f"Error processing SMILES: {str(e)}", None
# Handle file input
if file_obj is not None:
try:
if hasattr(file_obj, 'name'):
with open(file_obj.name, 'r') as f:
content = f.read()
else:
content = file_obj.decode('utf-8') if isinstance(file_obj, bytes) else str(file_obj)
output_text = ""
for line in content.splitlines():
smiles = line.strip()
if not smiles:
continue
if not analyzer.is_peptide(smiles):
output_text += f"Skipping non-peptide SMILES: {smiles}\n"
continue
try:
# Process the structure
result = analyzer.analyze_structure(smiles)
output_text += f"\nSummary for SMILES: {smiles}\n"
output_text += f"Sequence: {result['three_letter']}\n"
output_text += f"One-letter code: {result['one_letter']}\n"
output_text += f"Is Cyclic: {'Yes' if result['is_cyclic'] else 'No'}\n"
output_text += "-" * 50 + "\n"
except Exception as e:
output_text += f"Error processing SMILES: {smiles} - {str(e)}\n"
output_text += "-" * 50 + "\n"
return output_text, None, None, []
except Exception as e:
return f"Error processing file: {str(e)}", None, None, []
return (
output_text or "No analysis done.",
img_cyclic if 'img_cyclic' in locals() else None,
#img_linear if 'img_linear' in locals() else None,
#structure_files if structure_files else []
)
"""
iface = gr.Interface(
fn=process_input,
inputs=[
gr.Textbox(
label="Enter SMILES string",
placeholder="Enter SMILES notation of peptide...",
lines=2
),],
#gr.File(
#label="Or upload a text file with SMILES",
#file_types=[".txt"]
#)],
outputs=[
gr.Textbox(
label="Analysis Results",
lines=10
),
gr.Image(
label="2D Structure with Annotations",
type="pil"
),
],
title="Peptide Structure Analyzer and Visualizer",
description='''
Analyze and visualize peptide structures from SMILES notation:
1. Validates if the input is a peptide structure
2. Determines if the peptide is cyclic
3. Parses the amino acid sequence
4. Creates 2D structure visualization with residue annotations
5. Optional linear representation
6. Optional 3D structure generation (ETKDG and UFF methods)
Input: Either enter a SMILES string directly or upload a text file containing SMILES strings
Example SMILES strings (copy and paste):
```
CC(C)C[C@@H]1NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@@H](C)N(C)C(=O)[C@H](Cc2ccccc2)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H]2CCCN2C1=O
```
```
C(C)C[C@@H]1NC(=O)[C@@H]2CCCN2C(=O)[C@@H](CC(C)C)NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@H](C)NC(=O)[C@H](Cc2ccccc2)NC1=O
```
```
CC(C)C[C@H]1C(=O)N(C)[C@@H](Cc2ccccc2)C(=O)NCC(=O)N[C@H](C(=O)N2CCCCC2)CC(=O)N(C)CC(=O)N[C@@H]([C@@H](C)O)C(=O)N(C)[C@@H](C)C(=O)N[C@@H](COC(C)(C)C)C(=O)N(C)[C@@H](Cc2ccccc2)C(=O)N1C
```
''',
flagging_mode="never"
)
if __name__ == "__main__":
iface.launch(share=True)
"""
from fastapi import FastAPI
import gradio as gr
# 1) Make a FastAPI with no OpenAPI/docs routes
app = FastAPI(docs_url=None, redoc_url=None, openapi_url=None)
# 2) Build your Interface as before
iface = gr.Interface(
fn=process_input,
inputs=[ gr.Textbox(label="Enter SMILES string", lines=2) ],
outputs=[
gr.Textbox(label="Analysis Results", lines=10),
gr.Image(label="2D Structure with Annotations", type="pil"),
],
title="Peptide Structure Analyzer and Visualizer",
flagging_mode="never"
)
# 3) Mount it at “/”
app = gr.mount_gradio_app(app, iface, path="/")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|