DIY_assistant / app.py
Chris4K's picture
Update app.py
876f5d0 verified
raw
history blame
40 kB
import os
import logging
import logging.config
from typing import Any
from uuid import uuid4, UUID
import json
import sys
import gradio as gr
from dotenv import load_dotenv
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage, ToolMessage
from langgraph.types import RunnableConfig
from pydantic import BaseModel
from pathlib import Path
load_dotenv()
# Check Gradio version and provide guidance
print(f"Gradio version: {gr.__version__}")
# Parse version to check compatibility
try:
version_parts = gr.__version__.split('.')
major_version = int(version_parts[0])
minor_version = int(version_parts[1]) if len(version_parts) > 1 else 0
if major_version < 4:
print("⚠️ WARNING: You're using an older version of Gradio.")
print(" Some features may be limited. Consider upgrading:")
print(" pip install --upgrade gradio>=4.0.0")
elif major_version >= 4:
print("✅ Gradio version is compatible with all features.")
except (ValueError, IndexError):
print("Could not parse Gradio version.")
print() # Add spacing
# There are tools set here dependent on environment variables
from graph import graph, weak_model, search_enabled # noqa
FOLLOWUP_QUESTION_NUMBER = 3
TRIM_MESSAGE_LENGTH = 16 # Includes tool messages
USER_INPUT_MAX_LENGTH = 10000 # Characters
# We need the same secret for data persistance
# If you store sensitive data, you should store your secret in .env
BROWSER_STORAGE_SECRET = "itsnosecret"
try:
with open('logging-config.json', 'r') as fh:
config = json.load(fh)
logging.config.dictConfig(config)
except FileNotFoundError:
# Fallback logging configuration
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def load_initial_greeting(filepath="greeting_prompt.txt") -> str:
"""
Loads the initial greeting message from a specified text file.
"""
try:
with open(filepath, "r", encoding="utf-8") as f:
return f.read().strip()
except FileNotFoundError:
logger.warning(f"Warning: Prompt file '{filepath}' not found.")
return "Welcome to DIYO! I'm here to help you create amazing DIY projects. What would you like to build today?"
async def chat_fn(user_input: str, history: dict, input_graph_state: dict, uuid: UUID, prompt: str, search_enabled: bool, download_website_text_enabled: bool):
"""
Args:
user_input (str): The user's input message
history (dict): The history of the conversation in gradio
input_graph_state (dict): The current state of the graph. This includes tool call history
uuid (UUID): The unique identifier for the current conversation. This can be used in conjunction with langgraph or for memory
prompt (str): The system prompt
Yields:
str: The output message
dict|Any: The final state of the graph
bool|Any: Whether to trigger follow up questions
"""
try:
logger.info(f"Processing user input: {user_input[:100]}...")
# Initialize input_graph_state if None
if input_graph_state is None:
input_graph_state = {}
input_graph_state["tools_enabled"] = {
"download_website_text": download_website_text_enabled,
"tavily_search_results_json": search_enabled,
}
if prompt:
input_graph_state["prompt"] = prompt
if input_graph_state.get("awaiting_human_input"):
input_graph_state["messages"].append(
ToolMessage(
tool_call_id=input_graph_state.pop("human_assistance_tool_id"),
content=user_input
)
)
input_graph_state["awaiting_human_input"] = False
else:
# New user message
if "messages" not in input_graph_state:
input_graph_state["messages"] = []
input_graph_state["messages"].append(
HumanMessage(user_input[:USER_INPUT_MAX_LENGTH])
)
input_graph_state["messages"] = input_graph_state["messages"][-TRIM_MESSAGE_LENGTH:]
config = RunnableConfig(
recursion_limit=20,
run_name="user_chat",
configurable={"thread_id": str(uuid)}
)
output: str = ""
final_state: dict | Any = {}
waiting_output_seq: list[str] = []
async for stream_mode, chunk in graph.astream(
input_graph_state,
config=config,
stream_mode=["values", "messages"],
):
if stream_mode == "values":
final_state = chunk
if chunk.get("messages") and len(chunk["messages"]) > 0:
last_message = chunk["messages"][-1]
if hasattr(last_message, "tool_calls") and last_message.tool_calls:
for msg_tool_call in last_message.tool_calls:
tool_name: str = msg_tool_call['name']
if tool_name == "tavily_search_results_json":
query = msg_tool_call['args']['query']
waiting_output_seq.append(f"🔍 Searching for '{query}'...")
yield "\n".join(waiting_output_seq), gr.skip(), gr.skip()
elif tool_name == "download_website_text":
url = msg_tool_call['args']['url']
waiting_output_seq.append(f"📥 Downloading text from '{url}'...")
yield "\n".join(waiting_output_seq), gr.skip(), gr.skip()
elif tool_name == "human_assistance":
query = msg_tool_call["args"]["query"]
waiting_output_seq.append(f"🤖: {query}")
# Save state to resume after user provides input
final_state["awaiting_human_input"] = True
final_state["human_assistance_tool_id"] = msg_tool_call["id"]
# Indicate that human input is needed
yield "\n".join(waiting_output_seq), final_state, True
return # Pause execution, resume in next call
else:
waiting_output_seq.append(f"🔧 Running {tool_name}...")
yield "\n".join(waiting_output_seq), gr.skip(), gr.skip()
elif stream_mode == "messages":
msg, metadata = chunk
# Check for the correct node name from your graph
node_name = metadata.get('langgraph_node', '')
if node_name in ["brainstorming_node", "prompt_planning_node", "generate_3d_node", "assistant_node"]:
current_chunk_text = ""
if isinstance(msg.content, str):
current_chunk_text = msg.content
elif isinstance(msg.content, list):
for block in msg.content:
if isinstance(block, dict) and block.get("type") == "text":
current_chunk_text += block.get("text", "")
elif isinstance(block, str):
current_chunk_text += block
if current_chunk_text:
output += current_chunk_text
yield output, gr.skip(), gr.skip()
# Final yield with complete response
yield output + " ", dict(final_state), True
except Exception as e:
logger.exception("Exception occurred in chat_fn")
user_error_message = "There was an error processing your request. Please try again."
yield user_error_message, gr.skip(), False
def clear():
"""Clear the current conversation state"""
return dict(), uuid4()
class FollowupQuestions(BaseModel):
"""Model for langchain to use for structured output for followup questions"""
questions: list[str]
async def populate_followup_questions(end_of_chat_response: bool, messages: dict[str, str], uuid: UUID):
"""
This function gets called a lot due to the asynchronous nature of streaming
Only populate followup questions if streaming has completed and the message is coming from the assistant
"""
if not end_of_chat_response or not messages or len(messages) == 0:
return *[gr.skip() for _ in range(FOLLOWUP_QUESTION_NUMBER)], False
# Check if the last message is from assistant
if messages[-1]["role"] != "assistant":
return *[gr.skip() for _ in range(FOLLOWUP_QUESTION_NUMBER)], False
try:
config = RunnableConfig(
run_name="populate_followup_questions",
configurable={"thread_id": str(uuid)}
)
weak_model_with_config = weak_model.with_config(config)
follow_up_questions = await weak_model_with_config.with_structured_output(FollowupQuestions).ainvoke([
("system", f"suggest {FOLLOWUP_QUESTION_NUMBER} followup questions for the user to ask the assistant. Refrain from asking personal questions."),
*messages,
])
if len(follow_up_questions.questions) != FOLLOWUP_QUESTION_NUMBER:
logger.warning("Invalid number of followup questions generated")
return *[gr.Button(visible=False) for _ in range(FOLLOWUP_QUESTION_NUMBER)], False
buttons = []
for i in range(FOLLOWUP_QUESTION_NUMBER):
buttons.append(
gr.Button(follow_up_questions.questions[i], visible=True, elem_classes="chat-tab"),
)
return *buttons, False
except Exception as e:
logger.error(f"Error generating followup questions: {e}")
return *[gr.Button(visible=False) for _ in range(FOLLOWUP_QUESTION_NUMBER)], False
async def summarize_chat(end_of_chat_response: bool, messages: dict, sidebar_summaries: dict, uuid: UUID):
"""Summarize chat for tab names"""
should_return = (
not end_of_chat_response or
not messages or
len(messages) == 0 or
messages[-1]["role"] != "assistant" or
isinstance(sidebar_summaries, type(lambda x: x)) or
uuid in sidebar_summaries
)
if should_return:
return gr.skip(), gr.skip()
# Filter valid messages
filtered_messages = []
for msg in messages:
if isinstance(msg, dict) and msg.get("content") and msg["content"].strip():
filtered_messages.append(msg)
# If we don't have any valid messages after filtering, provide a default summary
if not filtered_messages:
if uuid not in sidebar_summaries:
sidebar_summaries[uuid] = "New Chat"
return sidebar_summaries, False
try:
config = RunnableConfig(
run_name="summarize_chat",
configurable={"thread_id": str(uuid)}
)
weak_model_with_config = weak_model.with_config(config)
summary_response = await weak_model_with_config.ainvoke([
("system", "summarize this chat in 7 tokens or less. Refrain from using periods"),
*filtered_messages,
])
if uuid not in sidebar_summaries:
sidebar_summaries[uuid] = summary_response.content[:50] # Limit length
except Exception as e:
logger.error(f"Error summarizing chat: {e}")
if uuid not in sidebar_summaries:
sidebar_summaries[uuid] = "Chat Session"
return sidebar_summaries, False
async def new_tab(uuid, gradio_graph, messages, tabs, prompt, sidebar_summaries):
"""Create a new chat tab"""
new_uuid = uuid4()
new_graph = {}
# Save current tab if it has content
if messages and len(messages) > 0:
if uuid not in sidebar_summaries:
sidebar_summaries, _ = await summarize_chat(True, messages, sidebar_summaries, uuid)
tabs[uuid] = {
"graph": gradio_graph,
"messages": messages,
"prompt": prompt,
}
# Clear suggestion buttons
suggestion_buttons = [gr.Button(visible=False) for _ in range(FOLLOWUP_QUESTION_NUMBER)]
# Load initial greeting for new chat
greeting_text = load_initial_greeting()
new_chat_messages_for_display = [{"role": "assistant", "content": greeting_text}]
new_prompt = prompt if prompt else "You are a helpful DIY assistant."
return new_uuid, new_graph, new_chat_messages_for_display, tabs, new_prompt, sidebar_summaries, *suggestion_buttons
def switch_tab(selected_uuid, tabs, gradio_graph, uuid, messages, prompt):
"""Switch to a different chat tab"""
try:
# Save current state if there are messages
if messages and len(messages) > 0:
tabs[uuid] = {
"graph": gradio_graph if gradio_graph else {},
"messages": messages,
"prompt": prompt
}
if selected_uuid not in tabs:
logger.error(f"Could not find the selected tab in tabs storage: {selected_uuid}")
return gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), *[gr.Button(visible=False) for _ in range(FOLLOWUP_QUESTION_NUMBER)]
selected_tab_state = tabs[selected_uuid]
selected_graph = selected_tab_state.get("graph", {})
selected_messages = selected_tab_state.get("messages", [])
selected_prompt = selected_tab_state.get("prompt", "You are a helpful DIY assistant.")
suggestion_buttons = [gr.Button(visible=False) for _ in range(FOLLOWUP_QUESTION_NUMBER)]
return selected_graph, selected_uuid, selected_messages, tabs, selected_prompt, *suggestion_buttons
except Exception as e:
logger.error(f"Error switching tabs: {e}")
return gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), *[gr.Button(visible=False) for _ in range(FOLLOWUP_QUESTION_NUMBER)]
def delete_tab(current_chat_uuid, selected_uuid, sidebar_summaries, tabs):
"""Delete a chat tab"""
output_messages = gr.skip()
# If deleting the current tab, clear the chatbot
if current_chat_uuid == selected_uuid:
output_messages = []
# Remove from storage
if selected_uuid in tabs:
del tabs[selected_uuid]
if selected_uuid in sidebar_summaries:
del sidebar_summaries[selected_uuid]
return sidebar_summaries, tabs, output_messages
def submit_edit_tab(selected_uuid, sidebar_summaries, text):
"""Submit edited tab name"""
if text.strip():
sidebar_summaries[selected_uuid] = text.strip()[:50] # Limit length
return sidebar_summaries, ""
def load_mesh(mesh_file_name):
"""Load a 3D mesh file"""
return mesh_file_name
def get_sorted_3d_model_examples():
"""Get sorted list of 3D model examples"""
examples_dir = Path("./generated_3d_models")
# Create directory if it doesn't exist
examples_dir.mkdir(exist_ok=True)
if not examples_dir.exists():
return []
# Get all 3D model files with desired extensions
model_files = [
file for file in examples_dir.glob("*")
if file.suffix.lower() in {".obj", ".glb", ".gltf"}
]
# Sort files by creation time (latest first)
try:
sorted_files = sorted(
model_files,
key=lambda x: x.stat().st_ctime,
reverse=True
)
except (OSError, AttributeError):
# Fallback to name sorting if stat fails
sorted_files = sorted(model_files, key=lambda x: x.name, reverse=True)
# Convert to format [[path1], [path2], ...]
return [[str(file)] for file in sorted_files]
CSS = """
footer {visibility: hidden}
.followup-question-button {font-size: 12px }
.chat-tab {
font-size: 12px;
padding-inline: 0;
}
.chat-tab.active {
background-color: #654343;
}
#new-chat-button { background-color: #0f0f11; color: white; }
.tab-button-control {
min-width: 0;
padding-left: 0;
padding-right: 0;
}
.sidebar-collapsed {
display: none !important;
}
.sidebar-replacement {
background-color: #f8f9fa;
border-left: 1px solid #dee2e6;
padding: 10px;
min-height: 400px;
}
.wrap.sidebar-parent {
min-height: 2400px !important;
height: 2400px !important;
}
#main-app {
height: 4600px;
overflow-y: auto;
padding-top: 20px;
}
"""
TRIGGER_CHATINTERFACE_BUTTON = """
function triggerChatButtonClick() {
const chatTextbox = document.getElementById("chat-textbox");
if (!chatTextbox) {
console.error("Error: Could not find element with id 'chat-textbox'");
return;
}
const button = chatTextbox.querySelector("button");
if (!button) {
console.error("Error: No button found inside the chat-textbox element");
return;
}
button.click();
}"""
if __name__ == "__main__":
logger.info("Starting the DIYO interface")
# Check if BrowserState is available
has_browser_state = hasattr(gr, 'BrowserState')
logger.info(f"BrowserState available: {has_browser_state}")
if not has_browser_state:
print("📝 Note: Using session-only state (data won't persist after refresh)")
print(" For data persistence, upgrade to Gradio 4.0+")
logger.warning("BrowserState not available in this Gradio version. Using regular State instead.")
logger.warning("To use BrowserState, upgrade Gradio: pip install gradio>=4.0.0")
else:
print("💾 Using persistent browser state (data persists after refresh)")
print() # Add spacing
with gr.Blocks(title="DIYO - DIY Assistant", fill_height=True, css=CSS, elem_id="main-app") as demo:
# State management - Use BrowserState if available, otherwise regular State
is_new_user_for_greeting = gr.State(True)
if has_browser_state:
current_prompt_state = gr.BrowserState(
value="You are a helpful DIY assistant.",
storage_key="current_prompt_state",
secret=BROWSER_STORAGE_SECRET,
)
current_uuid_state = gr.BrowserState(
value=uuid4,
storage_key="current_uuid_state",
secret=BROWSER_STORAGE_SECRET,
)
current_langgraph_state = gr.BrowserState(
value=dict,
storage_key="current_langgraph_state",
secret=BROWSER_STORAGE_SECRET,
)
sidebar_names_state = gr.BrowserState(
value=dict,
storage_key="sidebar_names_state",
secret=BROWSER_STORAGE_SECRET,
)
offloaded_tabs_data_storage = gr.BrowserState(
value=dict,
storage_key="offloaded_tabs_data_storage",
secret=BROWSER_STORAGE_SECRET,
)
chatbot_message_storage = gr.BrowserState(
value=list,
storage_key="chatbot_message_storage",
secret=BROWSER_STORAGE_SECRET,
)
else:
# Fallback to regular State
current_prompt_state = gr.State("You are a helpful DIY assistant.")
current_uuid_state = gr.State(uuid4())
current_langgraph_state = gr.State({})
sidebar_names_state = gr.State({})
offloaded_tabs_data_storage = gr.State({})
chatbot_message_storage = gr.State([])
end_of_assistant_response_state = gr.State(False)
# Header
with gr.Row(elem_classes="header-margin"):
gr.Markdown("""
<div style="display: flex; align-items: center; justify-content: center; text-align: center; padding: 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 15px; margin-bottom: 20px; color: white; box-shadow: 0 4px 15px rgba(0,0,0,0.2);">
<h1>🔧 DIYO - Your DIY Assistant 🛠️</h1>
</div>
""")
# System prompt input
with gr.Row():
prompt_textbox = gr.Textbox(
label="System Prompt",
value="You are a helpful DIY assistant.",
show_label=True,
interactive=True,
placeholder="Enter custom system prompt..."
)
# Tool settings
with gr.Row():
checkbox_search_enabled = gr.Checkbox(
value=True,
label="Enable web search",
show_label=True,
visible=search_enabled,
scale=1,
)
checkbox_download_website_text = gr.Checkbox(
value=True,
show_label=True,
label="Enable downloading text from URLs",
scale=1,
)
# 3D Model display and controls
with gr.Row():
with gr.Column(scale=2):
model_3d_output = gr.Model3D(
clear_color=[0.0, 0.0, 0.0, 0.0],
label="3D Model Viewer",
height=400
)
with gr.Column(scale=1):
model_3d_upload_button = gr.UploadButton(
"📁 Upload 3D Model (.obj, .glb, .gltf)",
file_types=[".obj", ".glb", ".gltf"],
)
model_3d_upload_button.upload(
fn=load_mesh,
inputs=model_3d_upload_button,
outputs=model_3d_output
)
# Examples with error handling and version compatibility
try:
examples_list = get_sorted_3d_model_examples()
if examples_list:
examples_kwargs = {
"label": "Example 3D Models",
"examples": examples_list,
"inputs": model_3d_upload_button,
"outputs": model_3d_output,
"fn": load_mesh,
}
# Check if cache_examples parameter is supported
try:
init_params = gr.Examples.__init__.__code__.co_varnames
if 'cache_examples' in init_params:
examples_kwargs["cache_examples"] = False
except Exception:
# Parameter not supported, skip it
pass
gr.Examples(**examples_kwargs)
except Exception as e:
logger.error(f"Error setting up 3D model examples: {e}")
# Chat interface setup - with compatibility checks
with gr.Row():
multimodal = False
# Check if MultimodalTextbox is available
if hasattr(gr, 'MultimodalTextbox') and multimodal:
textbox_component = gr.MultimodalTextbox
else:
textbox_component = gr.Textbox
multimodal = False # Force to False if not available
textbox_kwargs = {
"show_label": False,
"label": "Message",
"placeholder": "Type a message...",
"scale": 1,
"elem_id": "chat-textbox",
"lines": 1,
}
# Check if newer textbox parameters are supported
try:
init_params = textbox_component.__init__.__code__.co_varnames
if 'autofocus' in init_params:
textbox_kwargs["autofocus"] = True
if 'submit_btn' in init_params:
textbox_kwargs["submit_btn"] = True
if 'stop_btn' in init_params:
textbox_kwargs["stop_btn"] = True
except Exception as e:
logger.warning(f"Error checking textbox parameters: {e}")
# Keep minimal parameters as fallback
textbox = textbox_component(**textbox_kwargs)
# Check if newer Chatbot parameters are supported
chatbot_kwargs = {
"height": 400,
"elem_classes": "main-chatbox"
}
# Add parameters that might not be available in older versions
try:
# Check parameter availability without creating test instance
init_params = gr.Chatbot.__init__.__code__.co_varnames
# Always try to set type="messages" to avoid the deprecation warning
if 'type' in init_params:
chatbot_kwargs["type"] = "messages"
logger.info("Using 'messages' type for chatbot")
else:
logger.warning("Chatbot 'type' parameter not supported, using default")
# Check if 'show_copy_button' parameter is supported
if 'show_copy_button' in init_params:
chatbot_kwargs["show_copy_button"] = True
# Check if 'scale' parameter is supported
if 'scale' in init_params:
chatbot_kwargs["scale"] = 0
except Exception as e:
logger.warning(f"Error checking Chatbot parameters: {e}")
# Use minimal parameters as fallback, but try to set type to avoid warning
chatbot_kwargs = {"height": 400}
try:
chatbot_kwargs["type"] = "messages"
except:
pass
chatbot = gr.Chatbot(**chatbot_kwargs)
# Follow-up question buttons
with gr.Row():
followup_question_buttons = []
for i in range(FOLLOWUP_QUESTION_NUMBER):
btn = gr.Button(f"Button {i+1}", visible=False, elem_classes="followup-question-button")
followup_question_buttons.append(btn)
# Tab management state
tab_edit_uuid_state = gr.State("")
# Update prompt state when changed
prompt_textbox.change(
fn=lambda prompt: prompt,
inputs=[prompt_textbox],
outputs=[current_prompt_state]
)
# Chat History Sidebar (using simple approach for compatibility)
with gr.Column():
gr.Markdown("### Chat History")
@gr.render(inputs=[tab_edit_uuid_state, end_of_assistant_response_state, sidebar_names_state, current_uuid_state, chatbot, offloaded_tabs_data_storage])
def render_chats(tab_uuid_edit, end_of_chat_response, sidebar_summaries, active_uuid, messages, tabs):
# Ensure sidebar_summaries is a dict
if not isinstance(sidebar_summaries, dict):
sidebar_summaries = {}
# Current tab button
current_tab_button_text = sidebar_summaries.get(active_uuid, "Current Chat")
if active_uuid not in tabs or not tabs[active_uuid]:
unique_id = f"current-tab-{active_uuid}-{uuid4()}"
gr.Button(
current_tab_button_text,
elem_classes=["chat-tab", "active"],
elem_id=unique_id
)
# Historical tabs
for chat_uuid, tab in reversed(tabs.items()):
if not tab: # Skip empty tabs
continue
elem_classes = ["chat-tab"]
if chat_uuid == active_uuid:
elem_classes.append("active")
button_uuid_state = gr.State(chat_uuid)
with gr.Row():
# Delete button
clear_tab_button = gr.Button(
"🗑",
scale=0,
elem_classes=["tab-button-control"],
elem_id=f"delete-btn-{chat_uuid}-{uuid4()}"
)
clear_tab_button.click(
fn=delete_tab,
inputs=[
current_uuid_state,
button_uuid_state,
sidebar_names_state,
offloaded_tabs_data_storage
],
outputs=[
sidebar_names_state,
offloaded_tabs_data_storage,
chatbot
]
)
# Tab name/edit functionality
chat_button_text = sidebar_summaries.get(chat_uuid, str(chat_uuid)[:8])
if chat_uuid != tab_uuid_edit:
# Edit button
set_edit_tab_button = gr.Button(
"✎",
scale=0,
elem_classes=["tab-button-control"],
elem_id=f"edit-btn-{chat_uuid}-{uuid4()}"
)
set_edit_tab_button.click(
fn=lambda x: x,
inputs=[button_uuid_state],
outputs=[tab_edit_uuid_state]
)
# Tab button
chat_tab_button = gr.Button(
chat_button_text,
elem_id=f"chat-{chat_uuid}-{uuid4()}",
elem_classes=elem_classes,
scale=2
)
chat_tab_button.click(
fn=switch_tab,
inputs=[
button_uuid_state,
offloaded_tabs_data_storage,
current_langgraph_state,
current_uuid_state,
chatbot,
prompt_textbox
],
outputs=[
current_langgraph_state,
current_uuid_state,
chatbot,
offloaded_tabs_data_storage,
prompt_textbox,
*followup_question_buttons
]
)
else:
# Edit textbox
chat_tab_text = gr.Textbox(
chat_button_text,
scale=2,
interactive=True,
show_label=False,
elem_id=f"edit-text-{chat_uuid}-{uuid4()}"
)
chat_tab_text.submit(
fn=submit_edit_tab,
inputs=[
button_uuid_state,
sidebar_names_state,
chat_tab_text
],
outputs=[
sidebar_names_state,
tab_edit_uuid_state
]
)
# New chat button
new_chat_button = gr.Button("➕ New Chat", elem_id="new-chat-button")
# Clear functionality
chatbot.clear(
fn=clear,
outputs=[current_langgraph_state, current_uuid_state]
)
# Main chat interface - with compatibility checks
chat_interface_kwargs = {
"chatbot": chatbot,
"fn": chat_fn,
"additional_inputs": [
current_langgraph_state,
current_uuid_state,
prompt_textbox,
checkbox_search_enabled,
checkbox_download_website_text,
],
"additional_outputs": [
current_langgraph_state,
end_of_assistant_response_state
],
"textbox": textbox,
}
# Check if newer ChatInterface parameters are supported
try:
init_params = gr.ChatInterface.__init__.__code__.co_varnames
# Check if 'type' parameter is supported
if 'type' in init_params:
chat_interface_kwargs["type"] = "messages"
# Check if 'multimodal' parameter is supported
if 'multimodal' in init_params:
chat_interface_kwargs["multimodal"] = multimodal
except Exception as e:
logger.warning(f"Error checking ChatInterface parameters: {e}")
# Keep minimal parameters as fallback
chat_interface = gr.ChatInterface(**chat_interface_kwargs)
# New chat button functionality
new_chat_button.click(
new_tab,
inputs=[
current_uuid_state,
current_langgraph_state,
chatbot,
offloaded_tabs_data_storage,
prompt_textbox,
sidebar_names_state,
],
outputs=[
current_uuid_state,
current_langgraph_state,
chatbot,
offloaded_tabs_data_storage,
prompt_textbox,
sidebar_names_state,
*followup_question_buttons,
]
)
# Follow-up button functionality
def click_followup_button(btn):
buttons = [gr.Button(visible=False) for _ in range(len(followup_question_buttons))]
return btn, *buttons
for btn in followup_question_buttons:
btn.click(
fn=click_followup_button,
inputs=[btn],
outputs=[
chat_interface.textbox,
*followup_question_buttons
]
).success(lambda: None, js=TRIGGER_CHATINTERFACE_BUTTON)
# Event handlers for chatbot changes - with compatibility checks
def setup_change_handler(fn, inputs, outputs, trigger_mode=None):
"""Helper function to set up change handlers with optional trigger_mode"""
try:
# Get the change method's parameter names
change_params = chatbot.change.__code__.co_varnames
if trigger_mode and 'trigger_mode' in change_params:
return chatbot.change(fn=fn, inputs=inputs, outputs=outputs, trigger_mode=trigger_mode)
else:
return chatbot.change(fn=fn, inputs=inputs, outputs=outputs)
except Exception as e:
logger.warning(f"Error setting up change handler: {e}")
# Fallback to basic change handler
try:
return chatbot.change(fn=fn, inputs=inputs, outputs=outputs)
except Exception as fallback_error:
logger.error(f"Failed to set up change handler: {fallback_error}")
return None
setup_change_handler(
fn=populate_followup_questions,
inputs=[
end_of_assistant_response_state,
chatbot,
current_uuid_state
],
outputs=[
*followup_question_buttons,
end_of_assistant_response_state
],
trigger_mode="multiple"
)
setup_change_handler(
fn=summarize_chat,
inputs=[
end_of_assistant_response_state,
chatbot,
sidebar_names_state,
current_uuid_state
],
outputs=[
sidebar_names_state,
end_of_assistant_response_state
],
trigger_mode="multiple"
)
setup_change_handler(
fn=lambda x: x,
inputs=[chatbot],
outputs=[chatbot_message_storage],
trigger_mode="always_last"
)
# Load event handlers - only add these if we have BrowserState
if has_browser_state:
@demo.load(
inputs=[is_new_user_for_greeting, chatbot_message_storage],
outputs=[chatbot_message_storage, is_new_user_for_greeting]
)
def handle_initial_greeting_load(current_is_new_user_flag: bool, existing_chat_history: list):
"""Handle initial greeting when the app loads"""
if current_is_new_user_flag:
greeting_message_text = load_initial_greeting()
greeting_entry = {"role": "assistant", "content": greeting_message_text}
if not isinstance(existing_chat_history, list):
existing_chat_history = []
updated_chat_history = [greeting_entry] + existing_chat_history
updated_is_new_user_flag = False
logger.info("Greeting added for new user.")
return updated_chat_history, updated_is_new_user_flag
else:
logger.info("Not a new user or already greeted.")
if not isinstance(existing_chat_history, list):
existing_chat_history = []
return existing_chat_history, False
@demo.load(inputs=[chatbot_message_storage], outputs=[chatbot])
def load_messages(messages):
"""Load stored messages into chatbot"""
if isinstance(messages, list):
return messages
return []
@demo.load(inputs=[current_prompt_state], outputs=[prompt_textbox])
def load_prompt(current_prompt):
"""Load stored prompt"""
if current_prompt:
return current_prompt
return "You are a helpful DIY assistant."
else:
# For regular State, add a simple greeting on load
@demo.load(outputs=[chatbot])
def load_initial_greeting():
"""Load initial greeting for users without BrowserState"""
greeting_text = load_initial_greeting()
return [{"role": "assistant", "content": greeting_text}]
# Launch the application
demo.launch(debug=True, share=True)