BackendServer / api.py
Codegeass321's picture
Working
455095d
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from typing import List, Optional
import numpy as np
import io
import os
import gc
from dotenv import load_dotenv
from pydub import AudioSegment
from utils import (
authenticate,
split_documents,
build_vectorstore,
retrieve_context,
retrieve_context_approx,
build_prompt,
ask_gemini,
load_documents_gradio,
transcribe
)
load_dotenv()
# Configure logging
import logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
app = FastAPI()
# Define the specific origins that are allowed to make requests to your API
origins = [
"http://localhost:3000", # For local development
"https://chat-docx-ai-vercel.vercel.app",
"https://huggingface.co", # Hugging Face Spaces domain
"https://codegeass321-chatdocxai.hf.space", # Old HF space
"https://codegeass321-backendserver.hf.space", # New HF space main UI
"https://codegeass321-backendserver-8000.hf.space", # New HF space API endpoint
"*", # Allow requests from the proxy (same origin)
]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
client = authenticate()
store = {"value": None}
@app.get("/")
async def root():
"""Root endpoint that redirects to status."""
logger.info("Root endpoint called")
return {
"message": "API is running. Use /status, /upload, or /ask endpoints."
}
@app.options("/upload")
async def options_upload():
return JSONResponse(
content={"status": "ok"},
headers={
"Access-Control-Allow-Origin": "*",
"Access-Control-Allow-Methods": "POST, OPTIONS",
"Access-Control-Allow-Headers": "Content-Type, Authorization",
},
)
@app.post("/upload")
async def upload(files: List[UploadFile] = File(...)):
headers = {
"Access-Control-Allow-Origin": "*",
"Access-Control-Allow-Methods": "POST, OPTIONS",
"Access-Control-Allow-Headers": "Content-Type, Authorization",
}
try:
logger.info(f"Upload request received with {len(files)} files")
for i, file in enumerate(files):
logger.info(f"File {i+1}: {file.filename}, content_type: {file.content_type}")
if not files:
return JSONResponse(
content={"status": "error", "message": "No files uploaded."},
status_code=400,
headers=headers
)
# Explicitly clear memory before processing new files
logger.info("Clearing previous vector store from memory...")
old_store_had_value = store.get("value") is not None
store["value"] = None
# Force garbage collection
gc.collect()
# More aggressive memory cleanup if needed
if old_store_had_value:
try:
if hasattr(gc, 'collect'):
for i in range(3): # Run multiple collection cycles
gc.collect(i)
except Exception as e:
logger.warning(f"Error during aggressive garbage collection: {e}")
logger.info("Memory cleared.")
logger.info("Starting document processing...")
try:
raw_docs = load_documents_gradio(files)
logger.info(f"Documents loaded: {len(raw_docs)} documents")
except Exception as doc_error:
logger.error(f"Error loading documents: {doc_error}")
return JSONResponse(
content={"status": "error", "message": f"Error loading documents: {str(doc_error)}"},
status_code=500,
headers=headers
)
if not raw_docs:
return JSONResponse(
content={"status": "error", "message": "No content could be extracted from the uploaded files."},
status_code=400,
headers=headers
)
logger.info("Documents loaded. Splitting documents...")
try:
chunks = split_documents(raw_docs)
logger.info(f"Documents split into {len(chunks)} chunks")
except Exception as split_error:
logger.error(f"Error splitting documents: {split_error}")
return JSONResponse(
content={"status": "error", "message": f"Error splitting documents: {str(split_error)}"},
status_code=500,
headers=headers
)
logger.info("Documents split. Building vector store...")
try:
store["value"] = build_vectorstore(chunks)
logger.info("Vector store built successfully.")
except Exception as vector_error:
logger.error(f"Error building vector store: {vector_error}")
return JSONResponse(
content={"status": "error", "message": f"Error building vector store: {str(vector_error)}"},
status_code=500,
headers=headers
)
return JSONResponse(
content={"status": "success", "message": "Document processed successfully! You can now ask questions."},
headers=headers
)
except Exception as e:
import traceback
error_trace = traceback.format_exc()
logger.error(f"An error occurred during upload: {e}")
logger.error(f"Traceback: {error_trace}")
return JSONResponse(
content={"status": "error", "message": f"An internal server error occurred: {str(e)}"},
status_code=500,
headers=headers
)
@app.post("/ask")
async def ask(
text: Optional[str] = Form(None),
audio: Optional[UploadFile] = File(None)
):
logger.info(f"Ask endpoint called: text={bool(text)}, audio={bool(audio)}")
transcribed = None
if store["value"] is None:
logger.warning("Ask called but no document is loaded")
return JSONResponse({"status": "error", "message": "Please upload and process a document first."}, status_code=400)
if text and text.strip():
query = text.strip()
elif audio is not None:
audio_bytes = await audio.read()
try:
audio_io = io.BytesIO(audio_bytes)
audio_seg = AudioSegment.from_file(audio_io)
y = np.array(audio_seg.get_array_of_samples()).astype(np.float32)
if audio_seg.channels == 2:
y = y.reshape((-1, 2)).mean(axis=1) # Convert to mono
y /= np.max(np.abs(y)) # Normalize to [-1, 1]
sr = audio_seg.frame_rate
transcribed = transcribe((sr, y))
query = transcribed
except FileNotFoundError as e:
return JSONResponse({"status": "error", "message": "Audio decode failed: ffmpeg is not installed or not in PATH. Please install ffmpeg."}, status_code=400)
except Exception as e:
return JSONResponse({"status": "error", "message": f"Audio decode failed: {str(e)}"}, status_code=400)
else:
logger.warning("Ask called with no text or audio")
return JSONResponse({"status": "error", "message": "Please provide a question by typing or speaking."}, status_code=400)
logger.info(f"Processing query: {query[:100]}...")
if store["value"]["chunks"] <= 50:
top_chunks = retrieve_context(query, store["value"])
else:
top_chunks = retrieve_context_approx(query, store["value"])
prompt = build_prompt(top_chunks, query)
answer = ask_gemini(prompt, client)
logger.info(f"Generated answer: {answer[:100]}...")
return {"status": "success", "answer": answer.strip(), "transcribed": transcribed}
@app.get("/status")
async def status():
"""Simple endpoint to check if the server is running."""
import platform
import sys
import psutil
logger.info("Status endpoint called")
# Get memory info
process = psutil.Process(os.getpid())
memory_info = process.memory_info()
status_info = {
"status": "ok",
"message": "Server is running",
"google_api_key_set": bool(os.environ.get("GOOGLE_API_KEY")),
"vectorstore_loaded": store.get("value") is not None,
"system_info": {
"platform": platform.platform(),
"python_version": sys.version,
"memory_usage_mb": memory_info.rss / (1024 * 1024),
"cpu_percent": process.cpu_percent(),
"available_memory_mb": psutil.virtual_memory().available / (1024 * 1024)
},
"env_vars": {
"PORT": os.environ.get("PORT"),
"SPACE_ID": os.environ.get("SPACE_ID"),
"SYSTEM": os.environ.get("SYSTEM")
}
}
logger.info(f"Status response: {status_info}")
return status_info
@app.post("/clear")
async def clear_context():
"""Clear the current document context and free up memory."""
global store
logger.info("Clearing document context...")
# Clear the store
if store.get("value") is not None:
store["value"] = None
# Force garbage collection
gc.collect()
# Run a more aggressive memory cleanup
try:
if hasattr(gc, 'collect'):
for i in range(3): # Run multiple collection cycles
gc.collect(i)
except Exception as e:
logger.warning(f"Error during aggressive garbage collection: {e}")
logger.info("Document context cleared successfully.")
return {"status": "success", "message": "Document context cleared successfully."}
else:
logger.info("No document context to clear.")
return {"status": "info", "message": "No document context was loaded."}