Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
import argparse | |
import os | |
import sys | |
import tempfile | |
import time | |
import torch | |
import torchaudio | |
from tortoise.api import MODELS_DIR, TextToSpeech | |
from tortoise.utils.audio import get_voices, load_voices, load_audio | |
from tortoise.utils.text import split_and_recombine_text | |
parser = argparse.ArgumentParser( | |
description="TorToiSe is a text-to-speech program that is capable of synthesizing speech " | |
"in multiple voices with realistic prosody and intonation." | |
) | |
parser.add_argument( | |
"text", | |
type=str, | |
nargs="*", | |
help="Text to speak. If omitted, text is read from stdin.", | |
) | |
parser.add_argument( | |
"-v, --voice", | |
type=str, | |
default="random", | |
metavar="VOICE", | |
dest="voice", | |
help="Selects the voice to use for generation. Use the & character to join two voices together. " | |
'Use a comma to perform inference on multiple voices. Set to "all" to use all available voices. ' | |
"Note that multiple voices require the --output-dir option to be set.", | |
) | |
parser.add_argument( | |
"-V, --voices-dir", | |
metavar="VOICES_DIR", | |
type=str, | |
dest="voices_dir", | |
help="Path to directory containing extra voices to be loaded. Use a comma to specify multiple directories.", | |
) | |
parser.add_argument( | |
"-p, --preset", | |
type=str, | |
default="fast", | |
choices=["ultra_fast", "fast", "standard", "high_quality"], | |
dest="preset", | |
help="Which voice quality preset to use.", | |
) | |
parser.add_argument( | |
"-q, --quiet", | |
default=False, | |
action="store_true", | |
dest="quiet", | |
help="Suppress all output.", | |
) | |
output_group = parser.add_mutually_exclusive_group(required=True) | |
output_group.add_argument( | |
"-l, --list-voices", | |
default=False, | |
action="store_true", | |
dest="list_voices", | |
help="List available voices and exit.", | |
) | |
output_group.add_argument( | |
"-P, --play", | |
action="store_true", | |
dest="play", | |
help="Play the audio (requires pydub).", | |
) | |
output_group.add_argument( | |
"-o, --output", | |
type=str, | |
metavar="OUTPUT", | |
dest="output", | |
help="Save the audio to a file.", | |
) | |
output_group.add_argument( | |
"-O, --output-dir", | |
type=str, | |
metavar="OUTPUT_DIR", | |
dest="output_dir", | |
help="Save the audio to a directory as individual segments.", | |
) | |
multi_output_group = parser.add_argument_group( | |
"multi-output options (requires --output-dir)" | |
) | |
multi_output_group.add_argument( | |
"--candidates", | |
type=int, | |
default=1, | |
help="How many output candidates to produce per-voice. Note that only the first candidate is used in the combined output.", | |
) | |
multi_output_group.add_argument( | |
"--regenerate", | |
type=str, | |
default=None, | |
help="Comma-separated list of clip numbers to re-generate.", | |
) | |
multi_output_group.add_argument( | |
"--skip-existing", | |
action="store_true", | |
help="Set to skip re-generating existing clips.", | |
) | |
advanced_group = parser.add_argument_group("advanced options") | |
advanced_group.add_argument( | |
"--produce-debug-state", | |
default=False, | |
action="store_true", | |
help="Whether or not to produce debug_states in current directory, which can aid in reproducing problems.", | |
) | |
advanced_group.add_argument( | |
"--seed", | |
type=int, | |
default=None, | |
help="Random seed which can be used to reproduce results.", | |
) | |
advanced_group.add_argument( | |
"--models-dir", | |
type=str, | |
default=MODELS_DIR, | |
help="Where to find pretrained model checkpoints. Tortoise automatically downloads these to " | |
"~/.cache/tortoise/.models, so this should only be specified if you have custom checkpoints.", | |
) | |
advanced_group.add_argument( | |
"--text-split", | |
type=str, | |
default=None, | |
help="How big chunks to split the text into, in the format <desired_length>,<max_length>.", | |
) | |
advanced_group.add_argument( | |
"--disable-redaction", | |
default=False, | |
action="store_true", | |
help="Normally text enclosed in brackets are automatically redacted from the spoken output " | |
"(but are still rendered by the model), this can be used for prompt engineering. " | |
"Set this to disable this behavior.", | |
) | |
advanced_group.add_argument( | |
"--device", type=str, default=None, help="Device to use for inference." | |
) | |
advanced_group.add_argument( | |
"--batch-size", | |
type=int, | |
default=None, | |
help="Batch size to use for inference. If omitted, the batch size is set based on available GPU memory.", | |
) | |
tuning_group = parser.add_argument_group("tuning options (overrides preset settings)") | |
tuning_group.add_argument( | |
"--num-autoregressive-samples", | |
type=int, | |
default=None, | |
help="Number of samples taken from the autoregressive model, all of which are filtered using CLVP. " | |
'As TorToiSe is a probabilistic model, more samples means a higher probability of creating something "great".', | |
) | |
tuning_group.add_argument( | |
"--temperature", | |
type=float, | |
default=None, | |
help="The softmax temperature of the autoregressive model.", | |
) | |
tuning_group.add_argument( | |
"--length-penalty", | |
type=float, | |
default=None, | |
help="A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs.", | |
) | |
tuning_group.add_argument( | |
"--repetition-penalty", | |
type=float, | |
default=None, | |
help="A penalty that prevents the autoregressive decoder from repeating itself during decoding. " | |
'Can be used to reduce the incidence of long silences or "uhhhhhhs", etc.', | |
) | |
tuning_group.add_argument( | |
"--top-p", | |
type=float, | |
default=None, | |
help='P value used in nucleus sampling. 0 to 1. Lower values mean the decoder produces more "likely" (aka boring) outputs.', | |
) | |
tuning_group.add_argument( | |
"--max-mel-tokens", | |
type=int, | |
default=None, | |
help="Restricts the output length. 1 to 600. Each unit is 1/20 of a second.", | |
) | |
tuning_group.add_argument( | |
"--cvvp-amount", | |
type=float, | |
default=None, | |
help="How much the CVVP model should influence the output." | |
"Increasing this can in some cases reduce the likelyhood of multiple speakers.", | |
) | |
tuning_group.add_argument( | |
"--diffusion-iterations", | |
type=int, | |
default=None, | |
help="Number of diffusion steps to perform. More steps means the network has more chances to iteratively" | |
"refine the output, which should theoretically mean a higher quality output. " | |
"Generally a value above 250 is not noticeably better, however.", | |
) | |
tuning_group.add_argument( | |
"--cond-free", | |
type=bool, | |
default=None, | |
help="Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion performs two forward passes for " | |
"each diffusion step: one with the outputs of the autoregressive model and one with no conditioning priors. The output " | |
"of the two is blended according to the cond_free_k value below. Conditioning-free diffusion is the real deal, and " | |
"dramatically improves realism.", | |
) | |
tuning_group.add_argument( | |
"--cond-free-k", | |
type=float, | |
default=None, | |
help="Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf]. " | |
"As cond_free_k increases, the output becomes dominated by the conditioning-free signal. " | |
"Formula is: output=cond_present_output*(cond_free_k+1)-cond_absenct_output*cond_free_k", | |
) | |
tuning_group.add_argument( | |
"--diffusion-temperature", | |
type=float, | |
default=None, | |
help="Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0 " | |
'are the "mean" prediction of the diffusion network and will sound bland and smeared. ', | |
) | |
usage_examples = f""" | |
Examples: | |
Read text using random voice and place it in a file: | |
{parser.prog} -o hello.wav "Hello, how are you?" | |
Read text from stdin and play it using the tom voice: | |
echo "Say it like you mean it!" | {parser.prog} -P -v tom | |
Read a text file using multiple voices and save the audio clips to a directory: | |
{parser.prog} -O /tmp/tts-results -v tom,emma <textfile.txt | |
""" | |
try: | |
args = parser.parse_args() | |
except SystemExit as e: | |
if e.code == 0: | |
print(usage_examples) | |
sys.exit(e.code) | |
extra_voice_dirs = args.voices_dir.split(",") if args.voices_dir else [] | |
all_voices = sorted(get_voices(extra_voice_dirs)) | |
if args.list_voices: | |
for v in all_voices: | |
print(v) | |
sys.exit(0) | |
selected_voices = all_voices if args.voice == "all" else args.voice.split(",") | |
selected_voices = [v.split("&") if "&" in v else [v] for v in selected_voices] | |
for voices in selected_voices: | |
for v in voices: | |
if v != "random" and v not in all_voices: | |
parser.error( | |
f"voice {v} not available, use --list-voices to see available voices." | |
) | |
if len(args.text) == 0: | |
text = "" | |
for line in sys.stdin: | |
text += line | |
else: | |
text = " ".join(args.text) | |
text = text.strip() | |
if args.text_split: | |
desired_length, max_length = [int(x) for x in args.text_split.split(",")] | |
if desired_length > max_length: | |
parser.error( | |
f"--text-split: desired_length ({desired_length}) must be <= max_length ({max_length})" | |
) | |
texts = split_and_recombine_text(text, desired_length, max_length) | |
else: | |
texts = split_and_recombine_text(text) | |
if len(texts) == 0: | |
parser.error("no text provided") | |
if args.output_dir: | |
os.makedirs(args.output_dir, exist_ok=True) | |
else: | |
if len(selected_voices) > 1: | |
parser.error('cannot have multiple voices without --output-dir"') | |
if args.candidates > 1: | |
parser.error('cannot have multiple candidates without --output-dir"') | |
# error out early if pydub isn't installed | |
if args.play: | |
try: | |
import pydub | |
import pydub.playback | |
except ImportError: | |
parser.error( | |
'--play requires pydub to be installed, which can be done with "pip install pydub"' | |
) | |
seed = int(time.time()) if args.seed is None else args.seed | |
if not args.quiet: | |
print("Loading tts...") | |
tts = TextToSpeech( | |
models_dir=args.models_dir, | |
enable_redaction=not args.disable_redaction, | |
device=args.device, | |
autoregressive_batch_size=args.batch_size, | |
) | |
gen_settings = { | |
"use_deterministic_seed": seed, | |
"verbose": not args.quiet, | |
"k": args.candidates, | |
"preset": args.preset, | |
} | |
tuning_options = [ | |
"num_autoregressive_samples", | |
"temperature", | |
"length_penalty", | |
"repetition_penalty", | |
"top_p", | |
"max_mel_tokens", | |
"cvvp_amount", | |
"diffusion_iterations", | |
"cond_free", | |
"cond_free_k", | |
"diffusion_temperature", | |
] | |
for option in tuning_options: | |
if getattr(args, option) is not None: | |
gen_settings[option] = getattr(args, option) | |
total_clips = len(texts) * len(selected_voices) | |
regenerate_clips = ( | |
[int(x) for x in args.regenerate.split(",")] if args.regenerate else None | |
) | |
for voice_idx, voice in enumerate(selected_voices): | |
audio_parts = [] | |
voice_samples, conditioning_latents = load_voices(voice, extra_voice_dirs) | |
for text_idx, text in enumerate(texts): | |
clip_name = f'{"-".join(voice)}_{text_idx:02d}' | |
if args.output_dir: | |
first_clip = os.path.join(args.output_dir, f"{clip_name}_00.wav") | |
if ( | |
args.skip_existing | |
or (regenerate_clips and text_idx not in regenerate_clips) | |
) and os.path.exists(first_clip): | |
audio_parts.append(load_audio(first_clip, 24000)) | |
if not args.quiet: | |
print(f"Skipping {clip_name}") | |
continue | |
if not args.quiet: | |
print( | |
f"Rendering {clip_name} ({(voice_idx * len(texts) + text_idx + 1)} of {total_clips})..." | |
) | |
print(" " + text) | |
gen = tts.tts_with_preset( | |
text, | |
voice_samples=voice_samples, | |
conditioning_latents=conditioning_latents, | |
**gen_settings, | |
) | |
gen = gen if args.candidates > 1 else [gen] | |
for candidate_idx, audio in enumerate(gen): | |
audio = audio.squeeze(0).cpu() | |
if candidate_idx == 0: | |
audio_parts.append(audio) | |
if args.output_dir: | |
filename = f"{clip_name}_{candidate_idx:02d}.wav" | |
torchaudio.save(os.path.join(args.output_dir, filename), audio, 24000) | |
audio = torch.cat(audio_parts, dim=-1) | |
if args.output_dir: | |
filename = f'{"-".join(voice)}_combined.wav' | |
torchaudio.save(os.path.join(args.output_dir, filename), audio, 24000) | |
elif args.output: | |
filename = args.output if args.output else os.tmp | |
torchaudio.save(args.output, audio, 24000) | |
elif args.play: | |
f = tempfile.NamedTemporaryFile(suffix=".wav", delete=True) | |
torchaudio.save(f.name, audio, 24000) | |
pydub.playback.play(pydub.AudioSegment.from_wav(f.name)) | |
if args.produce_debug_state: | |
os.makedirs("debug_states", exist_ok=True) | |
dbg_state = (seed, texts, voice_samples, conditioning_latents, args) | |
torch.save( | |
dbg_state, os.path.join("debug_states", f'debug_{"-".join(voice)}.pth') | |
) | |