Voice-TTS-And-Cloning / scripts /tortoise_tts.py
CodingBillionaire's picture
Upload tortoise_tts.py
579b2c4
#!/usr/bin/env python3
import argparse
import os
import sys
import tempfile
import time
import torch
import torchaudio
from tortoise.api import MODELS_DIR, TextToSpeech
from tortoise.utils.audio import get_voices, load_voices, load_audio
from tortoise.utils.text import split_and_recombine_text
parser = argparse.ArgumentParser(
description="TorToiSe is a text-to-speech program that is capable of synthesizing speech "
"in multiple voices with realistic prosody and intonation."
)
parser.add_argument(
"text",
type=str,
nargs="*",
help="Text to speak. If omitted, text is read from stdin.",
)
parser.add_argument(
"-v, --voice",
type=str,
default="random",
metavar="VOICE",
dest="voice",
help="Selects the voice to use for generation. Use the & character to join two voices together. "
'Use a comma to perform inference on multiple voices. Set to "all" to use all available voices. '
"Note that multiple voices require the --output-dir option to be set.",
)
parser.add_argument(
"-V, --voices-dir",
metavar="VOICES_DIR",
type=str,
dest="voices_dir",
help="Path to directory containing extra voices to be loaded. Use a comma to specify multiple directories.",
)
parser.add_argument(
"-p, --preset",
type=str,
default="fast",
choices=["ultra_fast", "fast", "standard", "high_quality"],
dest="preset",
help="Which voice quality preset to use.",
)
parser.add_argument(
"-q, --quiet",
default=False,
action="store_true",
dest="quiet",
help="Suppress all output.",
)
output_group = parser.add_mutually_exclusive_group(required=True)
output_group.add_argument(
"-l, --list-voices",
default=False,
action="store_true",
dest="list_voices",
help="List available voices and exit.",
)
output_group.add_argument(
"-P, --play",
action="store_true",
dest="play",
help="Play the audio (requires pydub).",
)
output_group.add_argument(
"-o, --output",
type=str,
metavar="OUTPUT",
dest="output",
help="Save the audio to a file.",
)
output_group.add_argument(
"-O, --output-dir",
type=str,
metavar="OUTPUT_DIR",
dest="output_dir",
help="Save the audio to a directory as individual segments.",
)
multi_output_group = parser.add_argument_group(
"multi-output options (requires --output-dir)"
)
multi_output_group.add_argument(
"--candidates",
type=int,
default=1,
help="How many output candidates to produce per-voice. Note that only the first candidate is used in the combined output.",
)
multi_output_group.add_argument(
"--regenerate",
type=str,
default=None,
help="Comma-separated list of clip numbers to re-generate.",
)
multi_output_group.add_argument(
"--skip-existing",
action="store_true",
help="Set to skip re-generating existing clips.",
)
advanced_group = parser.add_argument_group("advanced options")
advanced_group.add_argument(
"--produce-debug-state",
default=False,
action="store_true",
help="Whether or not to produce debug_states in current directory, which can aid in reproducing problems.",
)
advanced_group.add_argument(
"--seed",
type=int,
default=None,
help="Random seed which can be used to reproduce results.",
)
advanced_group.add_argument(
"--models-dir",
type=str,
default=MODELS_DIR,
help="Where to find pretrained model checkpoints. Tortoise automatically downloads these to "
"~/.cache/tortoise/.models, so this should only be specified if you have custom checkpoints.",
)
advanced_group.add_argument(
"--text-split",
type=str,
default=None,
help="How big chunks to split the text into, in the format <desired_length>,<max_length>.",
)
advanced_group.add_argument(
"--disable-redaction",
default=False,
action="store_true",
help="Normally text enclosed in brackets are automatically redacted from the spoken output "
"(but are still rendered by the model), this can be used for prompt engineering. "
"Set this to disable this behavior.",
)
advanced_group.add_argument(
"--device", type=str, default=None, help="Device to use for inference."
)
advanced_group.add_argument(
"--batch-size",
type=int,
default=None,
help="Batch size to use for inference. If omitted, the batch size is set based on available GPU memory.",
)
tuning_group = parser.add_argument_group("tuning options (overrides preset settings)")
tuning_group.add_argument(
"--num-autoregressive-samples",
type=int,
default=None,
help="Number of samples taken from the autoregressive model, all of which are filtered using CLVP. "
'As TorToiSe is a probabilistic model, more samples means a higher probability of creating something "great".',
)
tuning_group.add_argument(
"--temperature",
type=float,
default=None,
help="The softmax temperature of the autoregressive model.",
)
tuning_group.add_argument(
"--length-penalty",
type=float,
default=None,
help="A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs.",
)
tuning_group.add_argument(
"--repetition-penalty",
type=float,
default=None,
help="A penalty that prevents the autoregressive decoder from repeating itself during decoding. "
'Can be used to reduce the incidence of long silences or "uhhhhhhs", etc.',
)
tuning_group.add_argument(
"--top-p",
type=float,
default=None,
help='P value used in nucleus sampling. 0 to 1. Lower values mean the decoder produces more "likely" (aka boring) outputs.',
)
tuning_group.add_argument(
"--max-mel-tokens",
type=int,
default=None,
help="Restricts the output length. 1 to 600. Each unit is 1/20 of a second.",
)
tuning_group.add_argument(
"--cvvp-amount",
type=float,
default=None,
help="How much the CVVP model should influence the output."
"Increasing this can in some cases reduce the likelyhood of multiple speakers.",
)
tuning_group.add_argument(
"--diffusion-iterations",
type=int,
default=None,
help="Number of diffusion steps to perform. More steps means the network has more chances to iteratively"
"refine the output, which should theoretically mean a higher quality output. "
"Generally a value above 250 is not noticeably better, however.",
)
tuning_group.add_argument(
"--cond-free",
type=bool,
default=None,
help="Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion performs two forward passes for "
"each diffusion step: one with the outputs of the autoregressive model and one with no conditioning priors. The output "
"of the two is blended according to the cond_free_k value below. Conditioning-free diffusion is the real deal, and "
"dramatically improves realism.",
)
tuning_group.add_argument(
"--cond-free-k",
type=float,
default=None,
help="Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf]. "
"As cond_free_k increases, the output becomes dominated by the conditioning-free signal. "
"Formula is: output=cond_present_output*(cond_free_k+1)-cond_absenct_output*cond_free_k",
)
tuning_group.add_argument(
"--diffusion-temperature",
type=float,
default=None,
help="Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0 "
'are the "mean" prediction of the diffusion network and will sound bland and smeared. ',
)
usage_examples = f"""
Examples:
Read text using random voice and place it in a file:
{parser.prog} -o hello.wav "Hello, how are you?"
Read text from stdin and play it using the tom voice:
echo "Say it like you mean it!" | {parser.prog} -P -v tom
Read a text file using multiple voices and save the audio clips to a directory:
{parser.prog} -O /tmp/tts-results -v tom,emma <textfile.txt
"""
try:
args = parser.parse_args()
except SystemExit as e:
if e.code == 0:
print(usage_examples)
sys.exit(e.code)
extra_voice_dirs = args.voices_dir.split(",") if args.voices_dir else []
all_voices = sorted(get_voices(extra_voice_dirs))
if args.list_voices:
for v in all_voices:
print(v)
sys.exit(0)
selected_voices = all_voices if args.voice == "all" else args.voice.split(",")
selected_voices = [v.split("&") if "&" in v else [v] for v in selected_voices]
for voices in selected_voices:
for v in voices:
if v != "random" and v not in all_voices:
parser.error(
f"voice {v} not available, use --list-voices to see available voices."
)
if len(args.text) == 0:
text = ""
for line in sys.stdin:
text += line
else:
text = " ".join(args.text)
text = text.strip()
if args.text_split:
desired_length, max_length = [int(x) for x in args.text_split.split(",")]
if desired_length > max_length:
parser.error(
f"--text-split: desired_length ({desired_length}) must be <= max_length ({max_length})"
)
texts = split_and_recombine_text(text, desired_length, max_length)
else:
texts = split_and_recombine_text(text)
if len(texts) == 0:
parser.error("no text provided")
if args.output_dir:
os.makedirs(args.output_dir, exist_ok=True)
else:
if len(selected_voices) > 1:
parser.error('cannot have multiple voices without --output-dir"')
if args.candidates > 1:
parser.error('cannot have multiple candidates without --output-dir"')
# error out early if pydub isn't installed
if args.play:
try:
import pydub
import pydub.playback
except ImportError:
parser.error(
'--play requires pydub to be installed, which can be done with "pip install pydub"'
)
seed = int(time.time()) if args.seed is None else args.seed
if not args.quiet:
print("Loading tts...")
tts = TextToSpeech(
models_dir=args.models_dir,
enable_redaction=not args.disable_redaction,
device=args.device,
autoregressive_batch_size=args.batch_size,
)
gen_settings = {
"use_deterministic_seed": seed,
"verbose": not args.quiet,
"k": args.candidates,
"preset": args.preset,
}
tuning_options = [
"num_autoregressive_samples",
"temperature",
"length_penalty",
"repetition_penalty",
"top_p",
"max_mel_tokens",
"cvvp_amount",
"diffusion_iterations",
"cond_free",
"cond_free_k",
"diffusion_temperature",
]
for option in tuning_options:
if getattr(args, option) is not None:
gen_settings[option] = getattr(args, option)
total_clips = len(texts) * len(selected_voices)
regenerate_clips = (
[int(x) for x in args.regenerate.split(",")] if args.regenerate else None
)
for voice_idx, voice in enumerate(selected_voices):
audio_parts = []
voice_samples, conditioning_latents = load_voices(voice, extra_voice_dirs)
for text_idx, text in enumerate(texts):
clip_name = f'{"-".join(voice)}_{text_idx:02d}'
if args.output_dir:
first_clip = os.path.join(args.output_dir, f"{clip_name}_00.wav")
if (
args.skip_existing
or (regenerate_clips and text_idx not in regenerate_clips)
) and os.path.exists(first_clip):
audio_parts.append(load_audio(first_clip, 24000))
if not args.quiet:
print(f"Skipping {clip_name}")
continue
if not args.quiet:
print(
f"Rendering {clip_name} ({(voice_idx * len(texts) + text_idx + 1)} of {total_clips})..."
)
print(" " + text)
gen = tts.tts_with_preset(
text,
voice_samples=voice_samples,
conditioning_latents=conditioning_latents,
**gen_settings,
)
gen = gen if args.candidates > 1 else [gen]
for candidate_idx, audio in enumerate(gen):
audio = audio.squeeze(0).cpu()
if candidate_idx == 0:
audio_parts.append(audio)
if args.output_dir:
filename = f"{clip_name}_{candidate_idx:02d}.wav"
torchaudio.save(os.path.join(args.output_dir, filename), audio, 24000)
audio = torch.cat(audio_parts, dim=-1)
if args.output_dir:
filename = f'{"-".join(voice)}_combined.wav'
torchaudio.save(os.path.join(args.output_dir, filename), audio, 24000)
elif args.output:
filename = args.output if args.output else os.tmp
torchaudio.save(args.output, audio, 24000)
elif args.play:
f = tempfile.NamedTemporaryFile(suffix=".wav", delete=True)
torchaudio.save(f.name, audio, 24000)
pydub.playback.play(pydub.AudioSegment.from_wav(f.name))
if args.produce_debug_state:
os.makedirs("debug_states", exist_ok=True)
dbg_state = (seed, texts, voice_samples, conditioning_latents, args)
torch.save(
dbg_state, os.path.join("debug_states", f'debug_{"-".join(voice)}.pth')
)