CodingBillionaire's picture
Upload 132 files
ee04bc2
import argparse
import os
from time import time
import torch
import torchaudio
from api import TextToSpeech, MODELS_DIR
from utils.audio import load_audio, load_voices
from utils.text import split_and_recombine_text
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--textfile",
type=str,
help="A file containing the text to read.",
default="tortoise/data/riding_hood.txt",
)
parser.add_argument(
"--voice",
type=str,
help="Selects the voice to use for generation. See options in voices/ directory (and add your own!) "
"Use the & character to join two voices together. Use a comma to perform inference on multiple voices.",
default="pat",
)
parser.add_argument(
"--output_path",
type=str,
help="Where to store outputs.",
default="results/longform/",
)
parser.add_argument(
"--preset", type=str, help="Which voice preset to use.", default="standard"
)
parser.add_argument(
"--regenerate",
type=str,
help="Comma-separated list of clip numbers to re-generate, or nothing.",
default=None,
)
parser.add_argument(
"--candidates",
type=int,
help="How many output candidates to produce per-voice. Only the first candidate is actually used in the final product, the others can be used manually.",
default=1,
)
parser.add_argument(
"--model_dir",
type=str,
help="Where to find pretrained model checkpoints. Tortoise automatically downloads these to .models, so this"
"should only be specified if you have custom checkpoints.",
default=MODELS_DIR,
)
parser.add_argument(
"--seed",
type=int,
help="Random seed which can be used to reproduce results.",
default=None,
)
parser.add_argument(
"--produce_debug_state",
type=bool,
help="Whether or not to produce debug_state.pth, which can aid in reproducing problems. Defaults to true.",
default=True,
)
args = parser.parse_args()
tts = TextToSpeech(models_dir=args.model_dir)
outpath = args.output_path
selected_voices = args.voice.split(",")
regenerate = args.regenerate
if regenerate is not None:
regenerate = [int(e) for e in regenerate.split(",")]
# Process text
with open(args.textfile, "r", encoding="utf-8") as f:
text = " ".join([l for l in f.readlines()])
if "|" in text:
print(
"Found the '|' character in your text, which I will use as a cue for where to split it up. If this was not"
"your intent, please remove all '|' characters from the input."
)
texts = text.split("|")
else:
texts = split_and_recombine_text(text)
seed = int(time()) if args.seed is None else args.seed
for selected_voice in selected_voices:
voice_outpath = os.path.join(outpath, selected_voice)
os.makedirs(voice_outpath, exist_ok=True)
if "&" in selected_voice:
voice_sel = selected_voice.split("&")
else:
voice_sel = [selected_voice]
voice_samples, conditioning_latents = load_voices(voice_sel)
all_parts = []
for j, text in enumerate(texts):
if regenerate is not None and j not in regenerate:
all_parts.append(
load_audio(os.path.join(voice_outpath, f"{j}.wav"), 24000)
)
continue
gen = tts.tts_with_preset(
text,
voice_samples=voice_samples,
conditioning_latents=conditioning_latents,
preset=args.preset,
k=args.candidates,
use_deterministic_seed=seed,
)
if args.candidates == 1:
gen = gen.squeeze(0).cpu()
torchaudio.save(os.path.join(voice_outpath, f"{j}.wav"), gen, 24000)
else:
candidate_dir = os.path.join(voice_outpath, str(j))
os.makedirs(candidate_dir, exist_ok=True)
for k, g in enumerate(gen):
torchaudio.save(
os.path.join(candidate_dir, f"{k}.wav"),
g.squeeze(0).cpu(),
24000,
)
gen = gen[0].squeeze(0).cpu()
all_parts.append(gen)
if args.candidates == 1:
full_audio = torch.cat(all_parts, dim=-1)
torchaudio.save(
os.path.join(voice_outpath, "combined.wav"), full_audio, 24000
)
if args.produce_debug_state:
os.makedirs("debug_states", exist_ok=True)
dbg_state = (seed, texts, voice_samples, conditioning_latents)
torch.save(dbg_state, f"debug_states/read_debug_{selected_voice}.pth")
# Combine each candidate's audio clips.
if args.candidates > 1:
audio_clips = []
for candidate in range(args.candidates):
for line in range(len(texts)):
wav_file = os.path.join(
voice_outpath, str(line), f"{candidate}.wav"
)
audio_clips.append(load_audio(wav_file, 24000))
audio_clips = torch.cat(audio_clips, dim=-1)
torchaudio.save(
os.path.join(voice_outpath, f"combined_{candidate:02d}.wav"),
audio_clips,
24000,
)
audio_clips = []