Spaces:
Runtime error
Runtime error
import argparse | |
import os | |
from time import time | |
import torch | |
import torchaudio | |
from api import TextToSpeech, MODELS_DIR | |
from utils.audio import load_audio, load_voices | |
from utils.text import split_and_recombine_text | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--textfile", | |
type=str, | |
help="A file containing the text to read.", | |
default="tortoise/data/riding_hood.txt", | |
) | |
parser.add_argument( | |
"--voice", | |
type=str, | |
help="Selects the voice to use for generation. See options in voices/ directory (and add your own!) " | |
"Use the & character to join two voices together. Use a comma to perform inference on multiple voices.", | |
default="pat", | |
) | |
parser.add_argument( | |
"--output_path", | |
type=str, | |
help="Where to store outputs.", | |
default="results/longform/", | |
) | |
parser.add_argument( | |
"--preset", type=str, help="Which voice preset to use.", default="standard" | |
) | |
parser.add_argument( | |
"--regenerate", | |
type=str, | |
help="Comma-separated list of clip numbers to re-generate, or nothing.", | |
default=None, | |
) | |
parser.add_argument( | |
"--candidates", | |
type=int, | |
help="How many output candidates to produce per-voice. Only the first candidate is actually used in the final product, the others can be used manually.", | |
default=1, | |
) | |
parser.add_argument( | |
"--model_dir", | |
type=str, | |
help="Where to find pretrained model checkpoints. Tortoise automatically downloads these to .models, so this" | |
"should only be specified if you have custom checkpoints.", | |
default=MODELS_DIR, | |
) | |
parser.add_argument( | |
"--seed", | |
type=int, | |
help="Random seed which can be used to reproduce results.", | |
default=None, | |
) | |
parser.add_argument( | |
"--produce_debug_state", | |
type=bool, | |
help="Whether or not to produce debug_state.pth, which can aid in reproducing problems. Defaults to true.", | |
default=True, | |
) | |
args = parser.parse_args() | |
tts = TextToSpeech(models_dir=args.model_dir) | |
outpath = args.output_path | |
selected_voices = args.voice.split(",") | |
regenerate = args.regenerate | |
if regenerate is not None: | |
regenerate = [int(e) for e in regenerate.split(",")] | |
# Process text | |
with open(args.textfile, "r", encoding="utf-8") as f: | |
text = " ".join([l for l in f.readlines()]) | |
if "|" in text: | |
print( | |
"Found the '|' character in your text, which I will use as a cue for where to split it up. If this was not" | |
"your intent, please remove all '|' characters from the input." | |
) | |
texts = text.split("|") | |
else: | |
texts = split_and_recombine_text(text) | |
seed = int(time()) if args.seed is None else args.seed | |
for selected_voice in selected_voices: | |
voice_outpath = os.path.join(outpath, selected_voice) | |
os.makedirs(voice_outpath, exist_ok=True) | |
if "&" in selected_voice: | |
voice_sel = selected_voice.split("&") | |
else: | |
voice_sel = [selected_voice] | |
voice_samples, conditioning_latents = load_voices(voice_sel) | |
all_parts = [] | |
for j, text in enumerate(texts): | |
if regenerate is not None and j not in regenerate: | |
all_parts.append( | |
load_audio(os.path.join(voice_outpath, f"{j}.wav"), 24000) | |
) | |
continue | |
gen = tts.tts_with_preset( | |
text, | |
voice_samples=voice_samples, | |
conditioning_latents=conditioning_latents, | |
preset=args.preset, | |
k=args.candidates, | |
use_deterministic_seed=seed, | |
) | |
if args.candidates == 1: | |
gen = gen.squeeze(0).cpu() | |
torchaudio.save(os.path.join(voice_outpath, f"{j}.wav"), gen, 24000) | |
else: | |
candidate_dir = os.path.join(voice_outpath, str(j)) | |
os.makedirs(candidate_dir, exist_ok=True) | |
for k, g in enumerate(gen): | |
torchaudio.save( | |
os.path.join(candidate_dir, f"{k}.wav"), | |
g.squeeze(0).cpu(), | |
24000, | |
) | |
gen = gen[0].squeeze(0).cpu() | |
all_parts.append(gen) | |
if args.candidates == 1: | |
full_audio = torch.cat(all_parts, dim=-1) | |
torchaudio.save( | |
os.path.join(voice_outpath, "combined.wav"), full_audio, 24000 | |
) | |
if args.produce_debug_state: | |
os.makedirs("debug_states", exist_ok=True) | |
dbg_state = (seed, texts, voice_samples, conditioning_latents) | |
torch.save(dbg_state, f"debug_states/read_debug_{selected_voice}.pth") | |
# Combine each candidate's audio clips. | |
if args.candidates > 1: | |
audio_clips = [] | |
for candidate in range(args.candidates): | |
for line in range(len(texts)): | |
wav_file = os.path.join( | |
voice_outpath, str(line), f"{candidate}.wav" | |
) | |
audio_clips.append(load_audio(wav_file, 24000)) | |
audio_clips = torch.cat(audio_clips, dim=-1) | |
torchaudio.save( | |
os.path.join(voice_outpath, f"combined_{candidate:02d}.wav"), | |
audio_clips, | |
24000, | |
) | |
audio_clips = [] | |