Doctor_v2 / app.py
davidfearne's picture
Upload 5 files
6560820 verified
raw
history blame
32.2 kB
from fastapi import FastAPI, HTTPException
import streamlit as st
import pandas as pd
from pydantic import BaseModel, Field, validator
import numpy as np
import plotly.graph_objects as go
from azure_openai import converse_with_patient, create_diagnosis
from memory import get_conversation, store_conversation, update_conversation
import uuid
class ask_question (BaseModel):
user_input: str
id: str
app = FastAPI()
def generate_expert_confidence_chart(diagnosis):
"""
Extracts expert confidence data from JSON and generates a multi-colored bar chart.
"""
# Extract expert distribution data
expert_distribution = diagnosis["expert_distribution"]
# Process the data into a structured format
rows = []
for key, value in expert_distribution.items():
expert, attribute = key.rsplit(", ", 1) # Ensure splitting at the last comma
rows.append({"Expert": expert, "Attribute": attribute, "Value": value})
# Create a DataFrame
df = pd.DataFrame(rows)
# Filter the DataFrame for confidence values only
df_confidence = df[df["Attribute"] == "confidence"].copy()
# Merge confidence values with corresponding thinking explanations
df_thinking = df[df["Attribute"] == "thinking"].copy()
df_confidence = df_confidence.merge(df_thinking, on="Expert", suffixes=("_confidence", "_thinking"))
# Convert confidence values to numeric
df_confidence["Value_confidence"] = pd.to_numeric(df_confidence["Value_confidence"])
# Define a function to map confidence scores to colors
def confidence_to_color(confidence):
"""
Maps confidence score (0-100) to a blended color between red (0 confidence) and green (100 confidence).
"""
red = np.array([255, 0, 0])
green = np.array([0, 255, 0])
blend_ratio = confidence / 100 # Normalize between 0 and 1
blended_color = (1 - blend_ratio) * red + blend_ratio * green
return f"rgb({int(blended_color[0])}, {int(blended_color[1])}, {int(blended_color[2])})"
# Apply color mapping
df_confidence["Color"] = df_confidence["Value_confidence"].apply(confidence_to_color)
# Create the bar chart
fig = go.Figure()
# Add bars with customized colors and reduced spacing
fig.add_trace(go.Bar(
y=df_confidence["Expert"],
x=df_confidence["Value_confidence"],
text=df_confidence["Value_confidence"],
hovertext=df_confidence["Value_thinking"],
orientation="h",
marker=dict(color=df_confidence["Color"]),
width=0.3, # Reduce bar width for closer spacing
textposition="inside"
))
# Update layout for better visibility
fig.update_layout(
title="Expert Confidence in Diagnosis",
xaxis_title="Confidence Score",
yaxis_title="Medical Expert",
yaxis=dict(tickmode="linear", dtick=1, automargin=True),
height=max(400, 40 * len(df_confidence)), # Adjust height dynamically
bargap=0.1 # Reduce spacing between bars
)
# Update hover template
fig.update_traces(
hovertemplate="<b>%{y}</b><br>Confidence: %{x}%<br>Thinking: %{hovertext}"
)
# Show the plot
return fig
# FastAPI interface routes
# @app.get("/")
# async def root():
# return {"message": "Welcome to the GenAI Symptom Checker"}
# @app.post("/ask")
# async def ask_question(question: ask_question):
# try:
# user_input = question.user_input
# conversation_id = question.id
# exists, count, conversation_obj = get_conversation(conversation_id)
# if count == 6:
# response = converse_with_patient(conversation_obj, user_input)
# store_conversation(conversation_id, conversation_id, user_input, response)
# exists, count, conversation_obj = get_conversation(conversation_id)
# diagnosis = create_diagnosis(conversation_obj)
# return {"response": response, "count": count, "diagnosis": diagnosis}
# if count > 6:
# exists, count, conversation_obj = get_conversation(conversation_id)
# diagnosis_content = next((item['content'] for item in conversation_obj if item['role'] == 'diagnosis'), None)
# return {"response": "You have reached the maximum number of questions", "count": count, "diagnosis": diagnosis_content}
# if exists == "PASS":
# response = converse_with_patient(conversation_obj, user_input)
# update_conversation(conversation_id, conversation_id, user_input, response)
# return {"response": response, "count": count, "diagnosis": "none"}
# else:
# response = converse_with_patient("",user_input)
# store_conversation(conversation_id, conversation_id, user_input, response)
# return {"response": response, "count": count, "diagnosis": "none"}
# except Exception as e:
# raise HTTPException(status_code=500, detail=str(e))
# app config
st.set_page_config(page_title="virtual clinician", page_icon=":medical_symbol:")
st.title("Virtual Clinician :medical_symbol:")
user_id = st.text_input("Name:", key="user_id")
conversation_id = user_id
# Ensure user_id is defined or fallback to a default value
if not user_id:
st.warning("Hi, Who am I speaking with?")
else:
# session state
if "chat_history" not in st.session_state:
st.session_state.chat_history = [
{"role": "AI", "content": f"Hello, {user_id} I am the virtual clinician. How can I help you today?"},
]
# conversation
for message in st.session_state.chat_history:
if message["role"] == "AI":
with st.chat_message("AI"):
st.write(message["content"])
elif message["role"] == "Human":
with st.chat_message("Human"):
st.write(message["content"])
# user input
user_input = st.chat_input("Type your message here...")
if user_input is not None and user_input != "":
st.session_state.chat_history.append({"role": "Human", "content": user_input})
with st.chat_message("Human"):
st.markdown(user_input)
# this functions checks to see if the conversation exists
exists, count, conversation_obj = get_conversation(conversation_id)
# if the conversation does not exist, it creates a new conversation
if count > 5:
response = converse_with_patient(conversation_obj, user_input)
conversation_obj = update_conversation(conversation_id, user_input, response)
print(conversation_obj)
with st.spinner("Creating a diagnosis..."):
outcome, diagnosis = create_diagnosis(conversation_obj)
if outcome == "SUCCESS":
st.subheader("Diagnosis Summary")
st.write(f"**Consensus Confidence:** {diagnosis['concensus_confidence']}%")
st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
st.write(f"**Evaluation Confidence:** {diagnosis['evaluate_confidence']}%")
st.write(f"**Evaluation Explanation:** {diagnosis['evaluate_explanation']}")
st.write(f"**Next Best Action:** {diagnosis['next_best_action_']}")
st.write(f"**Next Best Action Explanation:** {diagnosis['next_best_action_explanation']}")
st.write(f"**Next Best Action Confidence:** {diagnosis['next_best_action_confidence']}%")
# Generate and display the plotly chart
st.subheader("Expert Confidence Levels")
fig = generate_expert_confidence_chart(diagnosis)
st.plotly_chart(fig)
# if the diagnosis is not successful, display a message
if outcome == "FAIL1":
st.write("Diagnosis not available Failed to find concensus")
st.subheader("Incomplete Diagnosis")
st.write(f"**Consensus Confidence:** {diagnosis['concensus_confidence']}%")
st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
st.write(f"**Next Best Action:** See GP")
st.write(f"**Next Best Action Explanation:** Please give more details to help the AI better understand your symptoms ")
# Generate and display the plotly chart
st.subheader("Expert Confidence Levels")
fig = generate_expert_confidence_chart(diagnosis)
st.plotly_chart(fig)
if outcome == "FAIL1":
st.write("Diagnosis not available Failed to match described symptoms with know symptoms for AI diagnosis")
st.subheader("Incomplete Diagnosis")
st.write(f"**Consensus Confidence:** {diagnosis['concensus_confidence']}%")
st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
st.write(f"**Evaluation Confidence:** {diagnosis['evaluate_confidence']}%")
st.write(f"**Evaluation Explanation:** {diagnosis['evaluate_explanation']}")
st.write(f"**Next Best Action:** See GP")
st.write(f"**Next Best Action Explanation:** Please give more details to help the AI better understand your symptoms ")
# Generate and display the plotly chart
st.subheader("Expert Confidence Levels")
fig = generate_expert_confidence_chart(diagnosis)
st.plotly_chart(fig)
if exists == "PASS":
response = converse_with_patient(conversation_obj, user_input)
update_conversation(conversation_id, user_input, response)
st.session_state.chat_history.append({"role": "AI", "content": response})
with st.chat_message("AI"):
st.write(response)
else:
response = converse_with_patient("",user_input)
store_conversation(conversation_id, user_input, response)
st.session_state.chat_history.append({"role": "AI", "content": response})
with st.chat_message("AI"):
st.write(response)
# if exists == "FAIL":
# response = converse_with_patient("",user_query)
# store_conversation(conversation_id, user_query, response)
# st.session_state.chat_history.append({"role": "AI", "content": response})
# # if the conversation exists use it to inform the AI's context
# response = converse_with_patient(st.session_state.chat_history, user_query)
# # update the conversation with the new response
# update_conversation(conversation_id, user_query, response)
# once 6 interactions have been made, the AI will generate a diagnosis
# if count > 6:
# # write last question to the chat log
# st.session_state.chat_history.append({"role": "Human", "content": user_query})
# # get an AI response
# response_data = converse_with_patient(st.session_state.chat_history, user_query)
# # write AI response to the chat
# st.session_state.chat_history.append({"role": "AI", "content": response_data})
# # send conversation to the AI to generate a diagnosis
# outcome, diagnosis = create_diagnosis(conversation_obj)
# # if the diagnosis is successful, display the diagnosis data
# if outcome == "PASS":
# st.subheader("Diagnosis Summary")
# st.write(f"**Consensus Confidence:** {['concensus_confidence']}%")
# st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
# st.write(f"**Evaluation Confidence:** {diagnosis['evaluate_confidence']}%")
# st.write(f"**Evaluation Explanation:** {diagnosis['evaluate_explanation']}")
# st.write(f"**Next Best Action:** {diagnosis['next_best_action_']}")
# st.write(f"**Next Best Action Explanation:** {diagnosis['next_best_action_explanation']}")
# st.write(f"**Next Best Action Confidence:** {diagnosis['next_best_action_confidence']}%")
# # Generate and display the plotly chart
# st.subheader("Expert Confidence Levels")
# fig = generate_expert_confidence_chart(diagnosis)
# st.plotly_chart(fig)
# # if the diagnosis is not successful, display a message
# else:
# st.write("Diagnosis not available")
# from fastapi import FastAPI, HTTPException
# import streamlit as st
# import pandas as pd
# from pydantic import BaseModel
# import numpy as np
# import plotly.graph_objects as go
# from azure_openai import converse_with_patient, create_diagnosis
# from memory import get_conversation, store_conversation, update_conversation, retrieve_conversation
# class AskQuestion(BaseModel):
# user_input: str
# id: str
# app = FastAPI()
# def generate_expert_confidence_chart(diagnosis):
# """
# Extracts expert confidence data from JSON and generates a multi-colored bar chart.
# """
# expert_distribution = diagnosis.get("expert_distribution", {})
# rows = []
# for key, value in expert_distribution.items():
# expert, attribute = key.rsplit(", ", 1)
# rows.append({"Expert": expert, "Attribute": attribute, "Value": value})
# df = pd.DataFrame(rows)
# df_confidence = df[df["Attribute"] == "confidence"].copy()
# df_thinking = df[df["Attribute"] == "thinking"].copy()
# df_confidence = df_confidence.merge(df_thinking, on="Expert", suffixes=("_confidence", "_thinking"))
# df_confidence["Value_confidence"] = pd.to_numeric(df_confidence["Value_confidence"])
# def confidence_to_color(confidence):
# red = np.array([255, 0, 0])
# green = np.array([0, 255, 0])
# blend_ratio = confidence / 100
# blended_color = (1 - blend_ratio) * red + blend_ratio * green
# return f"rgb({int(blended_color[0])}, {int(blended_color[1])}, {int(blended_color[2])})"
# df_confidence["Color"] = df_confidence["Value_confidence"].apply(confidence_to_color)
# fig = go.Figure()
# fig.add_trace(go.Bar(
# y=df_confidence["Expert"],
# x=df_confidence["Value_confidence"],
# text=df_confidence["Value_confidence"],
# hovertext=df_confidence["Value_thinking"],
# orientation="h",
# marker=dict(color=df_confidence["Color"]),
# width=0.3,
# textposition="inside"
# ))
# fig.update_layout(
# title="Expert Confidence in Diagnosis",
# xaxis_title="Confidence Score",
# yaxis_title="Medical Expert",
# yaxis=dict(tickmode="linear", dtick=1, automargin=True),
# height=max(400, 40 * len(df_confidence)),
# bargap=0.1
# )
# fig.update_traces(
# hovertemplate="<b>%{y}</b><br>Confidence: %{x}%<br>Thinking: %{hovertext}"
# )
# return fig
# conversation_id = "111a1"
# st.set_page_config(page_title="Virtual Clinician", page_icon="πŸ€–")
# st.title("Virtual Clinician :toolbox:")
# if "chat_history" not in st.session_state:
# st.session_state.chat_history = [
# {"role": "AI", "content": "Hello, I am the virtual clinician. How can I help you today?"},
# ]
# for message in st.session_state.chat_history:
# with st.chat_message(message["role"]):
# st.write(message["content"])
# user_query = st.chat_input("Type your message here...")
# if user_query:
# st.session_state.chat_history.append({"role": "Human", "content": user_query})
# with st.chat_message("Human"):
# st.markdown(user_query)
# exists, count, conversation_obj = get_conversation(conversation_id)
# if exists == "FAIL":
# response_data = converse_with_patient("", user_query)
# st.session_state.chat_history.append({"role": "AI", "content": response_data})
# store_conversation(conversation_id, user_query, response_data)
# else:
# response_data = converse_with_patient(st.session_state.chat_history, user_query)
# st.session_state.chat_history.append({"role": "AI", "content": response_data})
# update_conversation(conversation_id, conversation_id, user_query, response_data)
# if count >= 6:
# st.session_state.chat_history.append({"role": "Human", "content": user_query})
# response_data = converse_with_patient(st.session_state.chat_history, user_query)
# st.session_state.chat_history.append({"role": "AI", "content": response_data})
# outcome, diagnosis = create_diagnosis(conversation_obj)
# if outcome == "PASS":
# st.subheader("Diagnosis Summary")
# st.write(f"**Consensus Confidence:** {diagnosis['concensus_confidence']}%")
# st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
# st.write(f"**Evaluation Confidence:** {diagnosis['evaluate_confidence']}%")
# st.write(f"**Evaluation Explanation:** {diagnosis['evaluate_explanation']}")
# st.write(f"**Next Best Action:** {diagnosis['next_best_action_']}")
# st.write(f"**Next Best Action Explanation:** {diagnosis['next_best_action_explanation']}")
# st.write(f"**Next Best Action Confidence:** {diagnosis['next_best_action_confidence']}%")
# st.subheader("Expert Confidence Levels")
# fig = generate_expert_confidence_chart(diagnosis)
# st.plotly_chart(fig)
# else:
# st.write("Diagnosis not available")
# st.session_state.chat_history.append({"role": "AI", "content": response_data})
# with st.chat_message("AI"):
# st.write(response_data)
# from fastapi import FastAPI, HTTPException
# import streamlit as st
# import pandas as pd
# from pydantic import BaseModel
# import numpy as np
# import plotly.graph_objects as go
# from azure_openai import converse_with_patient, create_diagnosis
# from memory import get_conversation, store_conversation, update_conversation, retrieve_conversation
# class AskQuestion(BaseModel):
# user_input: str
# id: str
# app = FastAPI()
# def generate_expert_confidence_chart(diagnosis):
# """
# Extracts expert confidence data from JSON and generates a multi-colored bar chart.
# """
# expert_distribution = diagnosis.get("expert_distribution", {})
# rows = []
# for key, value in expert_distribution.items():
# expert, attribute = key.rsplit(", ", 1)
# rows.append({"Expert": expert, "Attribute": attribute, "Value": value})
# df = pd.DataFrame(rows)
# df_confidence = df[df["Attribute"] == "confidence"].copy()
# df_thinking = df[df["Attribute"] == "thinking"].copy()
# df_confidence = df_confidence.merge(df_thinking, on="Expert", suffixes=("_confidence", "_thinking"))
# df_confidence["Value_confidence"] = pd.to_numeric(df_confidence["Value_confidence"])
# def confidence_to_color(confidence):
# red = np.array([255, 0, 0])
# green = np.array([0, 255, 0])
# blend_ratio = confidence / 100
# blended_color = (1 - blend_ratio) * red + blend_ratio * green
# return f"rgb({int(blended_color[0])}, {int(blended_color[1])}, {int(blended_color[2])})"
# df_confidence["Color"] = df_confidence["Value_confidence"].apply(confidence_to_color)
# fig = go.Figure()
# fig.add_trace(go.Bar(
# y=df_confidence["Expert"],
# x=df_confidence["Value_confidence"],
# text=df_confidence["Value_confidence"],
# hovertext=df_confidence["Value_thinking"],
# orientation="h",
# marker=dict(color=df_confidence["Color"]),
# width=0.3,
# textposition="inside"
# ))
# fig.update_layout(
# title="Expert Confidence in Diagnosis",
# xaxis_title="Confidence Score",
# yaxis_title="Medical Expert",
# yaxis=dict(tickmode="linear", dtick=1, automargin=True),
# height=max(400, 40 * len(df_confidence)),
# bargap=0.1
# )
# fig.update_traces(
# hovertemplate="<b>%{y}</b><br>Confidence: %{x}%<br>Thinking: %{hovertext}"
# )
# return fig
# conversation_id = "111a1"
# st.set_page_config(page_title="Virtual Clinician", page_icon="πŸ€–")
# st.title("Virtual Clinician :toolbox:")
# if "chat_history" not in st.session_state:
# st.session_state.chat_history = get_conversation(conversation_id)[2] or [
# {"role": "AI", "content": "Hello, I am the virtual clinician. How can I help you today?"},
# ]
# for message in st.session_state.chat_history:
# with st.chat_message(message["role"]):
# st.write(message["content"])
# user_query = st.chat_input("Type your message here...")
# if user_query:
# st.session_state.chat_history.append({"role": "Human", "content": user_query})
# with st.chat_message("Human"):
# st.markdown(user_query)
# exists, count, conversation_obj = get_conversation(conversation_id)
# if not exists:
# response_data = converse_with_patient("", user_query)
# st.session_state.chat_history.append({"role": "AI", "content": response_data})
# store_conversation(conversation_id, conversation_id, user_query, response_data)
# response_data = converse_with_patient(st.session_state.chat_history, user_query)
# st.session_state.chat_history.append({"role": "AI", "content": response_data})
# update_conversation(conversation_id, conversation_id, user_query, response_data)
# if count >= 6:
# outcome, diagnosis = create_diagnosis(conversation_obj)
# if outcome == "PASS":
# st.subheader("Diagnosis Summary")
# st.write(f"**Consensus Confidence:** {diagnosis['concensus_confidence']}%")
# st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
# st.write(f"**Evaluation Confidence:** {diagnosis['evaluate_confidence']}%")
# st.write(f"**Evaluation Explanation:** {diagnosis['evaluate_explanation']}")
# st.write(f"**Next Best Action:** {diagnosis['next_best_action_']}")
# st.write(f"**Next Best Action Explanation:** {diagnosis['next_best_action_explanation']}")
# st.write(f"**Next Best Action Confidence:** {diagnosis['next_best_action_confidence']}%")
# st.subheader("Expert Confidence Levels")
# fig = generate_expert_confidence_chart(diagnosis)
# st.plotly_chart(fig)
# else:
# st.write("Diagnosis not available")
# with st.chat_message("AI"):
# st.write(response_data)
# store_conversation(conversation_id, conversation_id, "", st.session_state.chat_history)
# from fastapi import FastAPI, HTTPException
# import streamlit as st
# import pandas as pd
# from pydantic import BaseModel
# import numpy as np
# import plotly.graph_objects as go
# from azure_openai import converse_with_patient, create_diagnosis
# from memory import get_conversation, store_conversation, update_conversation, retrieve_conversation
# class AskQuestion(BaseModel):
# user_input: str
# id: str
# app = FastAPI()
# def generate_expert_confidence_chart(diagnosis):
# """
# Extracts expert confidence data from JSON and generates a multi-colored bar chart.
# """
# expert_distribution = diagnosis.get("expert_distribution", {})
# rows = []
# for key, value in expert_distribution.items():
# expert, attribute = key.rsplit(", ", 1)
# rows.append({"Expert": expert, "Attribute": attribute, "Value": value})
# df = pd.DataFrame(rows)
# df_confidence = df[df["Attribute"] == "confidence"].copy()
# df_thinking = df[df["Attribute"] == "thinking"].copy()
# df_confidence = df_confidence.merge(df_thinking, on="Expert", suffixes=("_confidence", "_thinking"))
# df_confidence["Value_confidence"] = pd.to_numeric(df_confidence["Value_confidence"])
# def confidence_to_color(confidence):
# red = np.array([255, 0, 0])
# green = np.array([0, 255, 0])
# blend_ratio = confidence / 100
# blended_color = (1 - blend_ratio) * red + blend_ratio * green
# return f"rgb({int(blended_color[0])}, {int(blended_color[1])}, {int(blended_color[2])})"
# df_confidence["Color"] = df_confidence["Value_confidence"].apply(confidence_to_color)
# fig = go.Figure()
# fig.add_trace(go.Bar(
# y=df_confidence["Expert"],
# x=df_confidence["Value_confidence"],
# text=df_confidence["Value_confidence"],
# hovertext=df_confidence["Value_thinking"],
# orientation="h",
# marker=dict(color=df_confidence["Color"]),
# width=0.3,
# textposition="inside"
# ))
# fig.update_layout(
# title="Expert Confidence in Diagnosis",
# xaxis_title="Confidence Score",
# yaxis_title="Medical Expert",
# yaxis=dict(tickmode="linear", dtick=1, automargin=True),
# height=max(400, 40 * len(df_confidence)),
# bargap=0.1
# )
# fig.update_traces(
# hovertemplate="<b>%{y}</b><br>Confidence: %{x}%<br>Thinking: %{hovertext}"
# )
# return fig
# conversation_id = "111a1"
# st.set_page_config(page_title="Virtual Clinician", page_icon="πŸ€–")
# st.title("Virtual Clinician :toolbox:")
# if "chat_history" not in st.session_state:
# st.session_state.chat_history = get_conversation(conversation_id)[2] or [
# {"role": "AI", "content": "Hello, I am the virtual clinician. How can I help you today?"},
# ]
# for message in st.session_state.chat_history:
# with st.chat_message(message["role"]):
# st.write(message["content"])
# user_query = st.chat_input("Type your message here...")
# if user_query:
# st.session_state.chat_history.append({"role": "Human", "content": user_query})
# with st.chat_message("Human"):
# st.markdown(user_query)
# exists, count, conversation_obj = get_conversation(conversation_id)
# if not exists:
# response = converse_with_patient("", user_query)
# store_conversation(conversation_id, conversation_id, user_query, response)
# exists, count, conversation_obj = get_conversation(conversation_id)
# response_data = converse_with_patient(st.session_state.chat_history, user_query)
# st.session_state.chat_history.append({"role": "AI", "content": response_data})
# update_conversation(conversation_id, conversation_id, user_query, response_data)
# if count >= 6:
# outcome, diagnosis = create_diagnosis(conversation_obj)
# if outcome == "PASS":
# st.subheader("Diagnosis Summary")
# st.write(f"**Consensus Confidence:** {diagnosis['concensus_confidence']}%")
# st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
# st.write(f"**Evaluation Confidence:** {diagnosis['evaluate_confidence']}%")
# st.write(f"**Evaluation Explanation:** {diagnosis['evaluate_explanation']}")
# st.write(f"**Next Best Action:** {diagnosis['next_best_action_']}")
# st.write(f"**Next Best Action Explanation:** {diagnosis['next_best_action_explanation']}")
# st.write(f"**Next Best Action Confidence:** {diagnosis['next_best_action_confidence']}%")
# st.subheader("Expert Confidence Levels")
# fig = generate_expert_confidence_chart(diagnosis)
# st.plotly_chart(fig)
# else:
# st.write("Diagnosis not available")
# with st.chat_message("AI"):
# st.write(response_data)
# store_conversation(conversation_id, conversation_id, "", st.session_state.chat_history)
# conversation_id = "111a1"
# st.set_page_config(page_title="Virtual Clinician", page_icon="πŸ€–")
# st.title("Virtual Clinician :toolbox:")
# # Fetch conversation history and ensure it's a list of dictionaries
# exists, count, conversation_obj = get_conversation(conversation_id)
# if "chat_history" not in st.session_state:
# if isinstance(conversation_obj, list) and all(isinstance(item, dict) for item in conversation_obj):
# st.session_state.chat_history = conversation_obj
# else:
# st.session_state.chat_history = [
# {"role": "AI", "content": "Hello, I am the virtual clinician. How can I help you today?"},
# ]
# # Ensure each message is a dictionary before accessing its keys
# for message in st.session_state.chat_history:
# if isinstance(message, dict) and "role" in message and "content" in message:
# with st.chat_message(message["role"]):
# st.write(message["content"])
# else:
# st.error("Invalid message format in chat history.")
# user_query = st.chat_input("Type your message here...")
# if user_query:
# st.session_state.chat_history.append({"role": "Human", "content": user_query})
# with st.chat_message("Human"):
# st.markdown(user_query)
# exists, count, conversation_obj = get_conversation(conversation_id)
# if not exists:
# response = converse_with_patient("", user_query)
# store_conversation(conversation_id, conversation_id, user_query, response)
# exists, count, conversation_obj = get_conversation(conversation_id)
# response_data = converse_with_patient(st.session_state.chat_history, user_query)
# st.session_state.chat_history.append({"role": "AI", "content": response_data})
# update_conversation(conversation_id, conversation_id, user_query, response_data)
# if count >= 6:
# outcome, diagnosis = create_diagnosis(conversation_obj)
# if outcome == "PASS":
# st.subheader("Diagnosis Summary")
# st.write(f"**Consensus Confidence:** {diagnosis.get('concensus_confidence', 'N/A')}%")
# st.write(f"**Consensus Thinking:** {diagnosis.get('concensus_thinking', 'N/A')}")
# st.write(f"**Evaluation Confidence:** {diagnosis.get('evaluate_confidence', 'N/A')}%")
# st.write(f"**Evaluation Explanation:** {diagnosis.get('evaluate_explanation', 'N/A')}")
# st.write(f"**Next Best Action:** {diagnosis.get('next_best_action_', 'N/A')}")
# st.write(f"**Next Best Action Explanation:** {diagnosis.get('next_best_action_explanation', 'N/A')}")
# st.write(f"**Next Best Action Confidence:** {diagnosis.get('next_best_action_confidence', 'N/A')}%")
# st.subheader("Expert Confidence Levels")
# fig = generate_expert_confidence_chart(diagnosis)
# st.plotly_chart(fig)
# else:
# st.write("Diagnosis not available")
# with st.chat_message("AI"):
# st.write(response_data)
# store_conversation(conversation_id, conversation_id, "", st.session_state.chat_history)