File size: 34,243 Bytes
da3d35e 44fd7c4 da3d35e 44fd7c4 da3d35e 44fd7c4 da3d35e 44fd7c4 da3d35e 44fd7c4 da3d35e 44fd7c4 da3d35e 44fd7c4 da3d35e 44fd7c4 da3d35e 44fd7c4 da3d35e 44fd7c4 da3d35e 44fd7c4 da3d35e 44fd7c4 da3d35e 44fd7c4 da3d35e 44fd7c4 da3d35e 44fd7c4 da3d35e 44fd7c4 da3d35e 44fd7c4 da3d35e 44fd7c4 da3d35e 44fd7c4 da3d35e 44fd7c4 da3d35e 44fd7c4 da3d35e 44fd7c4 da3d35e 44fd7c4 da3d35e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 |
"""
Marketing Image Generator with Agent Review - Complete Gradio App
Integrated single-file application that includes:
1. Image Generator Agent (using Google Imagen)
2. Image Reviewer Agent (using Google Gemini Vision)
3. Gradio UI for Hugging Face deployment
This combines the functionality of the entire marketing image generation system
into one deployable file for Hugging Face Spaces.
"""
import gradio as gr
import os
import base64
import io
import time
import re
import logging
import asyncio
from typing import Dict, Any, List, Optional
from PIL import Image
import google.generativeai as genai
from google import genai as genai_sdk
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Configuration
MAX_IMAGE_SIZE = 1024
DEFAULT_QUALITY_THRESHOLD = 0.8
# Initialize Google API with multiple authentication methods
def setup_google_auth():
"""Setup Google authentication with multiple fallback options"""
# Method 1: Try service account JSON (for Google Cloud APIs)
gcp_service_account = os.getenv("GOOGLE_SERVICE_ACCOUNT_JSON")
if gcp_service_account:
try:
import json
from google.oauth2 import service_account
import google.auth
# Parse the service account JSON
service_account_info = json.loads(gcp_service_account)
credentials = service_account.Credentials.from_service_account_info(service_account_info)
# Set up for Google Cloud APIs
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = 'temp_service_account.json'
with open('temp_service_account.json', 'w') as f:
json.dump(service_account_info, f)
logger.info("Google Cloud service account configured successfully")
return "service_account"
except Exception as e:
logger.warning(f"Failed to setup service account: {e}")
# Method 2: Try API keys (for Google AI Studio)
api_keys = [
os.getenv("GOOGLE_API_KEY"),
os.getenv("GOOGLE_AI_STUDIO_API_KEY"),
os.getenv("GCP_KEY_1"),
os.getenv("GCP_KEY_2"),
os.getenv("GCP_KEY_3")
]
google_api_key = next((key for key in api_keys if key), None)
if google_api_key:
try:
genai.configure(api_key=google_api_key)
logger.info("Google AI Studio API key configured successfully")
return google_api_key
except Exception as e:
logger.warning(f"Failed to configure API key: {e}")
logger.warning("No Google authentication found - using fallback mode")
return None
# Setup authentication
GOOGLE_AUTH = setup_google_auth()
# ====== IMAGE GENERATOR AGENT ======
class ImageGeneratorAgent:
"""Agent responsible for generating marketing images using Google Imagen"""
def __init__(self):
self.name = "image_generator_agent"
async def enhance_prompt(self, prompt: str, style: str) -> str:
"""Enhance user prompt for better image generation"""
if not GOOGLE_AUTH:
# Basic enhancement without AI
style_enhancers = {
"realistic": "photorealistic, high detail, professional photography, marketing quality",
"artistic": "artistic masterpiece, creative composition, marketing appeal",
"cartoon": "cartoon style, vibrant colors, playful, marketing friendly",
"illustration": "professional illustration, clean design, marketing material",
"photographic": "professional photograph, high quality, studio lighting, marketing shot"
}
enhancer = style_enhancers.get(style, "high quality, professional")
return f"{prompt}, {enhancer}, 4K resolution, sharp focus"
try:
enhancement_prompt = f"""
You are an expert prompt engineer for AI image generation. Enhance this marketing image prompt for optimal results with Google Imagen.
Original prompt: "{prompt}"
Desired style: "{style}"
Create an enhanced version that:
1. Maintains the core marketing intent
2. Adds specific technical details for image quality
3. Includes appropriate style descriptors for "{style}" style
4. Adds professional marketing composition guidance
5. Keeps the enhanced prompt under 150 words
Return only the enhanced prompt without explanation.
"""
model = genai.GenerativeModel('gemini-2.0-flash-exp')
response = model.generate_content(enhancement_prompt)
enhanced = response.text.strip()
logger.info(f"Enhanced prompt: {enhanced[:100]}...")
return enhanced
except Exception as e:
logger.warning(f"Failed to enhance prompt with AI: {e}")
style_enhancers = {
"realistic": "photorealistic, high detail, professional photography, marketing quality",
"artistic": "artistic masterpiece, creative composition, marketing appeal",
"cartoon": "cartoon style, vibrant colors, playful, marketing friendly",
"illustration": "professional illustration, clean design, marketing material",
"photographic": "professional photograph, high quality, studio lighting"
}
enhancer = style_enhancers.get(style, "high quality, professional")
return f"{prompt}, {enhancer}, 4K resolution, sharp focus"
async def generate_image(self, prompt: str, style: str = "realistic") -> Dict[str, Any]:
"""Generate image using Google Imagen"""
try:
# Enhance the prompt first
enhanced_prompt = await self.enhance_prompt(prompt, style)
# Try Google Imagen API
if GOOGLE_AUTH:
image_data = await self._generate_with_imagen(enhanced_prompt)
if image_data:
return {
"success": True,
"image_data": image_data,
"enhanced_prompt": enhanced_prompt,
"method": "Google Imagen"
}
# Fallback to placeholder for demo
return await self._generate_fallback(enhanced_prompt, style)
except Exception as e:
logger.error(f"Image generation failed: {e}")
return {
"success": False,
"error": str(e),
"enhanced_prompt": prompt
}
async def _generate_with_imagen(self, enhanced_prompt: str) -> Optional[str]:
"""Generate image using Google Imagen API"""
try:
# Handle different authentication methods
if GOOGLE_AUTH == "service_account":
# Use service account authentication
client = genai_sdk.Client() # Will use GOOGLE_APPLICATION_CREDENTIALS
else:
# Use API key authentication
client = genai_sdk.Client(api_key=GOOGLE_AUTH)
result = client.models.generate_images(
model="imagen-3.0-generate-002",
prompt=enhanced_prompt,
config={
"number_of_images": 1,
"output_mime_type": "image/png"
}
)
if result and hasattr(result, 'generated_images') and len(result.generated_images) > 0:
generated_image = result.generated_images[0]
if hasattr(generated_image, 'image') and hasattr(generated_image.image, 'image_bytes'):
image_bytes = generated_image.image.image_bytes
base64_image = base64.b64encode(image_bytes).decode('utf-8')
return f"data:image/png;base64,{base64_image}"
return None
except Exception as e:
logger.warning(f"Imagen API failed: {e}")
return None
async def _generate_fallback(self, enhanced_prompt: str, style: str) -> Dict[str, Any]:
"""Generate fallback placeholder image"""
try:
# Create a simple colored image based on prompt
import hashlib
prompt_hash = int(hashlib.md5(enhanced_prompt.encode()).hexdigest()[:8], 16)
# Generate deterministic but varied colors
colors = [
(70, 130, 180), # Steel Blue
(60, 179, 113), # Medium Sea Green
(255, 140, 0), # Dark Orange
(106, 90, 205), # Slate Blue
(220, 20, 60), # Crimson
(255, 215, 0), # Gold
(147, 112, 219), # Medium Purple
(32, 178, 170) # Light Sea Green
]
color = colors[prompt_hash % len(colors)]
img = Image.new('RGB', (1024, 1024), color)
# Add some simple text overlay
try:
from PIL import ImageDraw, ImageFont
draw = ImageDraw.Draw(img)
# Try to use a font, fallback to default
try:
font = ImageFont.truetype("/System/Library/Fonts/Arial.ttf", 48)
except:
font = ImageFont.load_default()
# Add text
text = f"Marketing Image\n{style.title()} Style"
draw.multiline_text((50, 450), text, fill=(255, 255, 255), font=font, align="center")
except Exception as e:
logger.warning(f"Could not add text overlay: {e}")
# Convert to base64
img_buffer = io.BytesIO()
img.save(img_buffer, format='PNG')
img_buffer.seek(0)
base64_image = base64.b64encode(img_buffer.read()).decode('utf-8')
return {
"success": True,
"image_data": f"data:image/png;base64,{base64_image}",
"enhanced_prompt": enhanced_prompt,
"method": "Fallback Demo"
}
except Exception as e:
logger.error(f"Fallback generation failed: {e}")
return {"success": False, "error": str(e)}
# ====== IMAGE REVIEWER AGENT ======
class ImageReviewerAgent:
"""Agent responsible for reviewing generated images for quality and relevance"""
def __init__(self):
self.name = "image_reviewer_agent"
def parse_prompt_elements(self, prompt: str) -> Dict[str, List[str]]:
"""Parse prompt to extract key elements for validation"""
prompt_lower = prompt.lower()
# Define patterns for different element types
patterns = {
"subjects": [
r'\b(person|man|woman|child|people|human|figure|team|group)\b',
r'\b(product|device|phone|laptop|car|building|office|space)\b',
r'\b(logo|brand|company|business|service)\b'
],
"style": [
r'\b(realistic|photorealistic|photograph|photo)\b',
r'\b(artistic|painting|drawing|illustration)\b',
r'\b(modern|contemporary|minimalist|professional)\b',
r'\b(cartoon|animated|3d|rendered)\b'
],
"colors": [
r'\b(blue|red|green|yellow|orange|purple|pink|black|white|gray|grey)\b',
r'\b(bright|dark|light|vibrant|muted|pastel|neon)\b',
r'\b(colorful|monochrome|gradient)\b'
],
"settings": [
r'\b(office|studio|outdoor|indoor|background|scene)\b',
r'\b(professional|corporate|casual|formal)\b',
r'\b(lighting|natural light|studio lighting)\b'
],
"marketing": [
r'\b(marketing|advertisement|promotional|campaign|brand)\b',
r'\b(professional|business|corporate|commercial)\b',
r'\b(hero|banner|social media|web|digital)\b'
]
}
def extract_matches(patterns_list: List[str], text: str) -> List[str]:
matches = set()
for pattern in patterns_list:
found = re.findall(pattern, text)
matches.update(found)
return list(matches)
return {
key: extract_matches(pattern_list, prompt_lower)
for key, pattern_list in patterns.items()
}
async def review_image(self, image_data: str, original_prompt: str, enhanced_prompt: str) -> Dict[str, Any]:
"""Review generated image for quality and relevance"""
try:
logger.info("Starting image review analysis")
# Parse prompt elements
prompt_elements = self.parse_prompt_elements(original_prompt)
# Try AI-powered review if API available
if GOOGLE_AUTH and image_data.startswith("data:image"):
ai_review = await self._ai_powered_review(image_data, original_prompt, enhanced_prompt, prompt_elements)
if ai_review:
return ai_review
# Fallback to prompt-based analysis
return await self._prompt_based_review(original_prompt, enhanced_prompt, prompt_elements)
except Exception as e:
logger.error(f"Image review failed: {e}")
return self._fallback_review(original_prompt)
async def _ai_powered_review(self, image_data: str, original_prompt: str, enhanced_prompt: str, prompt_elements: Dict) -> Optional[Dict[str, Any]]:
"""Review image using Google Gemini Vision"""
try:
# Extract image from data URL
if not image_data.startswith("data:image"):
return None
image_b64 = image_data.split(',')[1]
image_bytes = base64.b64decode(image_b64)
image = Image.open(io.BytesIO(image_bytes))
# Create detailed analysis prompt
analysis_prompt = f"""
Analyze this marketing image that was generated from: "{original_prompt}"
Enhanced prompt used: "{enhanced_prompt}"
Key elements to verify:
- Subjects: {', '.join(prompt_elements.get('subjects', []))}
- Style: {', '.join(prompt_elements.get('style', []))}
- Colors: {', '.join(prompt_elements.get('colors', []))}
- Setting: {', '.join(prompt_elements.get('settings', []))}
- Marketing elements: {', '.join(prompt_elements.get('marketing', []))}
Rate the image on:
1. Technical Quality (0.0-1.0): clarity, composition, lighting, resolution
2. Prompt Relevance (0.0-1.0): how well it matches the original request
3. Marketing Effectiveness (0.0-1.0): professional appeal, brand suitability
Provide response in this format:
QUALITY_SCORE: [0.0-1.0]
RELEVANCE_SCORE: [0.0-1.0]
MARKETING_SCORE: [0.0-1.0]
STRENGTHS: [List 2-3 strong points]
ISSUES: [List 2-3 improvement areas]
RECOMMENDATIONS: [List 2-3 specific suggestions]
OVERALL_ASSESSMENT: [Brief summary of the image's marketing potential]
"""
model = genai.GenerativeModel('gemini-2.0-flash-exp')
response = model.generate_content([analysis_prompt, image])
analysis_text = response.text
return self._parse_ai_review(analysis_text, original_prompt)
except Exception as e:
logger.warning(f"AI-powered review failed: {e}")
return None
def _parse_ai_review(self, analysis_text: str, original_prompt: str) -> Dict[str, Any]:
"""Parse AI review response into structured feedback"""
def extract_score(text: str, score_type: str) -> float:
pattern = rf"{score_type}_SCORE:\s*([\d.]+)"
match = re.search(pattern, text, re.IGNORECASE)
if match:
try:
return min(1.0, max(0.0, float(match.group(1))))
except ValueError:
pass
return 0.7
def extract_list_section(text: str, section: str) -> List[str]:
pattern = rf"{section}:\s*(.+?)(?=\n[A-Z_]+:|$)"
match = re.search(pattern, text, re.IGNORECASE | re.DOTALL)
if match:
items_text = match.group(1).strip()
items = [item.strip().strip('-β’*').strip()
for item in re.split(r'\n|,', items_text)
if item.strip() and len(item.strip()) > 3]
return items[:3] # Limit to 3 items
return []
try:
# Extract scores
quality_score = extract_score(analysis_text, "QUALITY")
relevance_score = extract_score(analysis_text, "RELEVANCE")
marketing_score = extract_score(analysis_text, "MARKETING")
# Extract feedback sections
strengths = extract_list_section(analysis_text, "STRENGTHS")
issues = extract_list_section(analysis_text, "ISSUES")
recommendations = extract_list_section(analysis_text, "RECOMMENDATIONS")
# Extract overall assessment
assessment_match = re.search(r"OVERALL_ASSESSMENT:\s*(.+?)(?=\n[A-Z_]+:|$)",
analysis_text, re.IGNORECASE | re.DOTALL)
overall_assessment = assessment_match.group(1).strip() if assessment_match else "Good marketing image potential"
# Calculate weighted overall score (emphasize marketing effectiveness)
overall_score = (quality_score * 0.3 + relevance_score * 0.4 + marketing_score * 0.3)
# Determine pass/fail
passed = overall_score >= 0.7 and relevance_score >= 0.6
return {
"success": True,
"overall_score": round(overall_score, 2),
"quality_score": round(quality_score, 2),
"relevance_score": round(relevance_score, 2),
"marketing_score": round(marketing_score, 2),
"passed": passed,
"strengths": strengths,
"issues": issues,
"recommendations": recommendations,
"overall_assessment": overall_assessment,
"review_method": "AI-Powered (Gemini Vision)"
}
except Exception as e:
logger.error(f"Error parsing AI review: {e}")
return self._fallback_review(original_prompt)
async def _prompt_based_review(self, original_prompt: str, enhanced_prompt: str, prompt_elements: Dict) -> Dict[str, Any]:
"""Review based on prompt analysis when AI review isn't available"""
issues = []
recommendations = []
strengths = []
# Analyze prompt completeness
total_elements = sum(len(elements) for elements in prompt_elements.values())
# Base scoring
if total_elements >= 8:
base_score = 0.8
strengths.append("Comprehensive prompt with detailed specifications")
elif total_elements >= 5:
base_score = 0.7
strengths.append("Good prompt detail level")
elif total_elements >= 3:
base_score = 0.6
issues.append("Prompt could use more specific details")
else:
base_score = 0.5
issues.append("Prompt lacks sufficient detail for optimal results")
recommendations.append("Add more specific details about subjects, style, and setting")
# Check for marketing-specific elements
marketing_elements = prompt_elements.get('marketing', [])
if marketing_elements:
base_score += 0.1
strengths.append("Contains marketing-focused language")
else:
recommendations.append("Consider adding marketing-specific context")
# Check for style specification
style_elements = prompt_elements.get('style', [])
if style_elements:
strengths.append(f"Clear style direction: {', '.join(style_elements[:2])}")
else:
issues.append("No clear artistic style specified")
recommendations.append("Specify desired artistic style (realistic, artistic, etc.)")
# Check for subject clarity
subject_elements = prompt_elements.get('subjects', [])
if subject_elements:
strengths.append(f"Clear subjects identified: {', '.join(subject_elements[:2])}")
else:
issues.append("Main subjects not clearly specified")
recommendations.append("Clearly define what should be the main focus")
# Calculate scores
quality_score = min(1.0, base_score + 0.1) # Slight boost for quality
relevance_score = base_score # Based on prompt completeness
marketing_score = base_score + (0.1 if marketing_elements else -0.1)
overall_score = (quality_score * 0.3 + relevance_score * 0.4 + marketing_score * 0.3)
passed = overall_score >= 0.6
return {
"success": True,
"overall_score": round(overall_score, 2),
"quality_score": round(quality_score, 2),
"relevance_score": round(relevance_score, 2),
"marketing_score": round(marketing_score, 2),
"passed": passed,
"strengths": strengths[:3],
"issues": issues[:3],
"recommendations": recommendations[:3],
"overall_assessment": f"Prompt-based analysis shows {'good' if passed else 'moderate'} marketing image potential",
"review_method": "Prompt Analysis"
}
def _fallback_review(self, original_prompt: str) -> Dict[str, Any]:
"""Fallback review when all else fails"""
word_count = len(original_prompt.split())
base_score = min(0.8, max(0.4, 0.4 + (word_count * 0.02)))
return {
"success": True,
"overall_score": base_score,
"quality_score": base_score,
"relevance_score": base_score,
"marketing_score": base_score,
"passed": base_score >= 0.6,
"strengths": ["Prompt provided for image generation"],
"issues": ["Unable to perform detailed analysis"],
"recommendations": ["Consider regenerating with more detailed prompt"],
"overall_assessment": "Basic review completed",
"review_method": "Fallback"
}
# ====== MAIN APPLICATION WORKFLOW ======
# Initialize agents
generator_agent = ImageGeneratorAgent()
reviewer_agent = ImageReviewerAgent()
def generate_marketing_image_with_review(
prompt: str,
style: str = "realistic",
quality_threshold: float = 0.8,
max_iterations: int = 2,
progress=gr.Progress(track_tqdm=True)
):
"""
Main workflow: Generate image and review it
"""
if not prompt.strip():
return None, "Please enter a prompt to generate an image.", "β No Prompt", ""
try:
progress(0.1, desc="Initializing generation workflow...")
# Step 1: Generate image
progress(0.3, desc="Generating marketing image...")
generation_result = asyncio.run(generator_agent.generate_image(prompt, style))
if not generation_result.get("success"):
error_msg = f"Image generation failed: {generation_result.get('error', 'Unknown error')}"
return None, error_msg, "β Generation Failed", ""
image_data = generation_result["image_data"]
enhanced_prompt = generation_result["enhanced_prompt"]
# Convert base64 to PIL Image for display
if image_data.startswith("data:image"):
image_b64 = image_data.split(',')[1]
image_bytes = base64.b64decode(image_b64)
display_image = Image.open(io.BytesIO(image_bytes))
else:
display_image = None
progress(0.6, desc="Reviewing image quality...")
# Step 2: Review the generated image
review_result = asyncio.run(reviewer_agent.review_image(image_data, prompt, enhanced_prompt))
progress(0.9, desc="Finalizing results...")
# Step 3: Format results
if review_result.get("success"):
# Build quality information display
quality_info = f"""
## π― Review Results
**Overall Score:** {review_result['overall_score']:.2f}/1.0
**Status:** {'β
Approved' if review_result['passed'] else 'β οΈ Needs Improvement'}
### Detailed Scores
- **Quality:** {review_result['quality_score']:.2f}/1.0
- **Relevance:** {review_result['relevance_score']:.2f}/1.0
- **Marketing Appeal:** {review_result['marketing_score']:.2f}/1.0
### πͺ Strengths
{chr(10).join(f"β’ {strength}" for strength in review_result.get('strengths', []))}
### β οΈ Areas for Improvement
{chr(10).join(f"β’ {issue}" for issue in review_result.get('issues', []))}
### π‘ Recommendations
{chr(10).join(f"β’ {rec}" for rec in review_result.get('recommendations', []))}
### π Assessment
{review_result.get('overall_assessment', 'Review completed')}
---
*Review Method: {review_result.get('review_method', 'Standard')}*
*Enhanced Prompt: {enhanced_prompt[:100]}...*
"""
review_status = "β
Approved" if review_result['passed'] else "β οΈ Needs Review"
# Add generation method info
debug_info = f"""
**Generation Details:**
- Method: {generation_result.get('method', 'Unknown')}
- Original Prompt: {prompt}
- Enhanced Prompt: {enhanced_prompt}
- Style: {style}
- API Status: {'β
Connected' if GOOGLE_AUTH else 'β οΈ Demo Mode'}
"""
else:
quality_info = f"Review failed: {review_result.get('error', 'Unknown error')}"
review_status = "β Review Failed"
debug_info = f"Generation Method: {generation_result.get('method', 'Unknown')}"
progress(1.0, desc="Complete!")
return display_image, quality_info, review_status, debug_info
except Exception as e:
logger.error(f"Workflow error: {str(e)}")
error_msg = f"Workflow failed: {str(e)}"
return None, error_msg, "β Error", f"Error details: {str(e)}"
# ====== GRADIO INTERFACE ======
def create_gradio_interface():
"""Create the complete Gradio interface"""
custom_css = """
.gradio-container {
max-width: 1400px !important;
margin: auto !important;
}
.header-text {
text-align: center;
color: #1f77b4;
margin-bottom: 2rem;
}
.quality-info {
background-color: #f8f9fa;
padding: 1rem;
border-radius: 0.5rem;
border-left: 4px solid #1f77b4;
font-family: monospace;
}
.status-approved { color: #28a745; font-weight: bold; }
.status-warning { color: #ffc107; font-weight: bold; }
.status-error { color: #dc3545; font-weight: bold; }
"""
with gr.Blocks(css=custom_css, title="Marketing Image Generator with AI Review") as interface:
# Header
gr.Markdown("""
# π¨ Marketing Image Generator with AI Review
### Professional marketing images with automated quality assurance
This system combines **Google Imagen** for image generation with **Google Gemini Vision** for intelligent quality review.
Perfect for creating professional marketing materials with AI-powered feedback.
""", elem_classes=["header-text"])
# API Status indicator
api_status = "π’ Google AI Connected" if GOOGLE_AUTH else "π‘ Demo Mode (No API Key)"
gr.Markdown(f"**Status:** {api_status}")
with gr.Row():
with gr.Column(scale=2):
# Input Section
gr.Markdown("## π Describe Your Marketing Image")
prompt = gr.Textbox(
label="Marketing Image Description",
placeholder="e.g., A professional team of diverse colleagues collaborating in a modern office space with natural lighting, for a corporate website hero image",
lines=4,
info="Be specific about subjects, setting, style, and intended marketing use"
)
with gr.Row():
style = gr.Dropdown(
choices=["realistic", "artistic", "cartoon", "illustration", "photographic"],
value="realistic",
label="Art Style",
info="Choose the visual style that fits your brand"
)
quality_threshold = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
label="Quality Threshold",
info="Minimum score for approval (0.0 = lenient, 1.0 = strict)"
)
with gr.Accordion("π§ Advanced Options", open=False):
max_iterations = gr.Slider(
minimum=1,
maximum=3,
value=2,
step=1,
label="Max Review Iterations",
info="Maximum attempts to improve the image"
)
generate_btn = gr.Button(
"π Generate & Review Marketing Image",
variant="primary",
size="lg"
)
with gr.Column(scale=3):
# Output Section
gr.Markdown("## πΌοΈ Generated Image & Analysis")
with gr.Row():
with gr.Column(scale=2):
generated_image = gr.Image(
label="Your Marketing Image",
type="pil",
interactive=False,
height=400
)
with gr.Column(scale=1):
review_status = gr.Textbox(
label="Review Status",
value="β³ Ready to Generate",
interactive=False,
max_lines=1
)
quality_info = gr.Markdown(
label="AI Quality Analysis",
value="*Generate an image to see detailed AI quality analysis and recommendations*",
elem_classes=["quality-info"]
)
# Debug/Technical Info (Collapsible)
with gr.Accordion("π§ Technical Details", open=False):
debug_info = gr.Markdown(
value="*Technical information will appear here after generation*"
)
# Examples Section
gr.Markdown("## π‘ Example Marketing Prompts")
examples = gr.Examples(
examples=[
["A diverse team of professionals collaborating around a modern conference table in a bright office space, corporate website hero image", "realistic"],
["A sleek product showcase featuring a smartphone on a clean white background with dramatic lighting, for e-commerce", "photographic"],
["A friendly customer service representative wearing a headset, smiling while helping clients in a contemporary office", "realistic"],
["A minimalist workspace setup with laptop, coffee, and plants, perfect for productivity app marketing", "artistic"],
["An abstract representation of data flow and connectivity, modern tech company branding", "illustration"],
["A celebration scene with confetti and happy people, perfect for achievement or success marketing", "realistic"]
],
inputs=[prompt, style],
label="Click any example to try it out!"
)
# Connect the workflow
generate_btn.click(
fn=generate_marketing_image_with_review,
inputs=[prompt, style, quality_threshold, max_iterations],
outputs=[generated_image, quality_info, review_status, debug_info],
show_progress=True
)
# Footer
gr.Markdown("""
---
<div style='text-align: center; color: #666; font-size: 0.9rem;'>
<p>π¨ <strong>Marketing Image Generator with AI Review</strong></p>
<p>Powered by Google Imagen & Gemini Vision | Built for Professional Marketing Teams</p>
<p><em>Generate β Review β Perfect: Your AI-powered creative workflow</em></p>
</div>
""")
return interface
# ====== APPLICATION ENTRY POINT ======
# Create the interface
demo = create_gradio_interface()
if __name__ == "__main__":
logger.info("Starting Marketing Image Generator with AI Review")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True,
)
|