File size: 6,282 Bytes
c0e639b
61ffb8e
 
 
 
 
c0e639b
d12096d
 
61ffb8e
d12096d
c0e639b
61ffb8e
d12096d
 
 
 
61ffb8e
 
 
 
d12096d
61ffb8e
d12096d
61ffb8e
 
14765ac
 
 
d12096d
14765ac
 
61ffb8e
d12096d
 
 
 
61ffb8e
d12096d
 
61ffb8e
 
 
d12096d
 
 
 
 
 
 
 
 
 
14765ac
d12096d
 
 
 
 
 
61ffb8e
 
d12096d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14765ac
61ffb8e
d12096d
 
61ffb8e
d12096d
 
61ffb8e
 
 
d12096d
 
61ffb8e
d12096d
 
 
 
 
61ffb8e
 
d12096d
 
 
 
 
 
 
61ffb8e
d12096d
 
 
 
61ffb8e
 
d12096d
 
 
61ffb8e
d12096d
 
 
61ffb8e
d12096d
61ffb8e
d12096d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61ffb8e
 
d12096d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from flask import Flask, request, jsonify, send_from_directory
from flask_cors import CORS
import joblib
import numpy as np
import json
import math
import os
import xgboost as xgb
import logging

app = Flask(__name__, static_folder=".", static_url_path="")
CORS(app)

# Setup logging
logging.basicConfig(level=logging.INFO)

# Load models
try:
    rf = joblib.load("rf_model.pkl")
    xgb_model = xgb.Booster()
    xgb_model.load_model("xgb_model.json")
    app.logger.info("βœ… Models loaded successfully.")
except Exception as e:
    app.logger.error(f"❌ Error loading models: {e}")
    raise e

# Load tile data
with open("tile_catalog.json", "r", encoding="utf-8") as f:
    tile_catalog = json.load(f)

with open("tile_sizes.json", "r", encoding="utf-8") as f:
    tile_sizes = json.load(f)

# Serve the frontend
@app.route('/')
def serve_index():
    return send_from_directory('.', 'index.html')

# Product recommendation endpoint
@app.route('/recommend', methods=['POST'])
def recommend():
    try:
        data = request.get_json()
        required_fields = ['tile_type', 'coverage', 'area', 'price_range']
        if not all(field in data for field in required_fields):
            return jsonify({"error": "Missing required fields"}), 400

        tile_type = data['tile_type'].lower()
        if tile_type not in ['floor', 'wall']:
            return jsonify({"error": "Invalid tile type"}), 400

        validate_positive_number(data['coverage'], "coverage")
        validate_positive_number(data['area'], "area")

        if (not isinstance(data['price_range'], list) or len(data['price_range']) != 2 or
            data['price_range'][0] < 0 or data['price_range'][1] <= 0 or
            data['price_range'][0] >= data['price_range'][1]):
            return jsonify({"error": "Invalid price range"}), 400

        features = prepare_features(data)
        xgb_pred = xgb_model.predict(xgb.DMatrix(features))[0]
        rf_pred = rf.predict_proba(features)[0][1]
        combined_score = (xgb_pred + rf_pred) / 2

        recommended_products = filter_products(
            tile_type=tile_type,
            min_price=data['price_range'][0],
            max_price=data['price_range'][1],
            preferred_sizes=data.get('preferred_sizes', []),
            min_score=0.5
        )

        response = {
            "recommendation_score": round(float(combined_score), 3),
            "total_matches": len(recommended_products),
            "recommended_products": recommended_products[:5],
            "calculation": calculate_requirements(data['area'], data['coverage'])
        }
        return jsonify(response)

    except Exception as e:
        app.logger.error(f"Error in /recommend: {str(e)}")
        return jsonify({"error": "Internal server error"}), 500

# Tile calculation endpoint
@app.route('/calculate', methods=['POST'])
def calculate():
    try:
        data = request.get_json()
        if 'tile_type' not in data or 'area' not in data or 'tile_size' not in data:
            return jsonify({"error": "Missing required fields"}), 400

        tile_type = data['tile_type'].lower()
        if tile_type not in ['floor', 'wall']:
            return jsonify({"error": "Invalid tile type"}), 400

        if data['tile_size'] not in tile_sizes:
            return jsonify({"error": "Invalid tile size"}), 400

        validate_positive_number(data['area'], "area")

        tile_info = tile_sizes[data['tile_size']]
        area_per_tile = tile_info['length'] * tile_info['width']
        tiles_needed = math.ceil((data['area'] / area_per_tile) * 1.1)
        tiles_per_box = tile_info.get('tiles_per_box', 10)
        boxes_needed = math.ceil(tiles_needed / tiles_per_box)

        matching_products = [
            p for p in tile_catalog
            if p['type'].lower() == tile_type and p['size'] == data['tile_size']
        ]

        return jsonify({
            "tile_type": tile_type,
            "area": data['area'],
            "tile_size": data['tile_size'],
            "tiles_needed": tiles_needed,
            "boxes_needed": boxes_needed,
            "matching_products": matching_products[:3],
            "total_matches": len(matching_products)
        })

    except Exception as e:
        app.logger.error(f"Error in /calculate: {str(e)}")
        return jsonify({"error": "Internal server error"}), 500

# === Utility Functions ===

def prepare_features(data):
    tile_type_num = 0 if data['tile_type'] == 'floor' else 1
    price_per_sqft = data['price_range'][1] / data['coverage']
    budget_efficiency = data['coverage'] / data['price_range'][1]

    return np.array([[
        tile_type_num,
        data['area'],
        data['coverage'],
        data['price_range'][0],
        data['price_range'][1],
        price_per_sqft,
        budget_efficiency
    ]])

def filter_products(tile_type, min_price, max_price, preferred_sizes, min_score=0.5):
    filtered = []
    for product in tile_catalog:
        if (product['type'].lower() == tile_type and
            min_price <= product['price'] <= max_price and
            (not preferred_sizes or product['size'] in preferred_sizes)):

            price_score = 1 - ((product['price'] - min_price) / (max_price - min_price + 1e-6))
            size_score = 1 if not preferred_sizes or product['size'] in preferred_sizes else 0.5
            product_score = (price_score + size_score) / 2

            if product_score >= min_score:
                filtered.append({
                    **product,
                    "recommendation_score": round(product_score, 2)
                })

    return sorted(filtered, key=lambda x: x['recommendation_score'], reverse=True)

def calculate_requirements(area, coverage):
    min_tiles = math.ceil(area / coverage)
    suggested_tiles = math.ceil(min_tiles * 1.1)
    return {
        "minimum_tiles": min_tiles,
        "suggested_tiles": suggested_tiles,
        "estimated_cost_range": [
            round(area * 3, 2),
            round(area * 10, 2)
        ]
    }

def validate_positive_number(value, field):
    if not isinstance(value, (int, float)) or value <= 0:
        raise ValueError(f"{field} must be a positive number")

# Run app
if __name__ == '__main__':
    app.run(host='0.0.0.0', port=7860, debug=False)