File size: 5,713 Bytes
75e2b50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from flask import Flask, request, jsonify, send_file
from flask_cors import CORS
import joblib
import xgboost as xgb
import numpy as np
import json
import math
import os
import logging

app = Flask(__name__)
CORS(app)
logging.basicConfig(level=logging.INFO)

# Load models
try:
    rf = joblib.load("rf_model.pkl")
    xgb_model = xgb.Booster()
    xgb_model.load_model("xgb_model.json")
    app.logger.info("βœ… Models loaded successfully.")
except Exception as e:
    app.logger.error(f"❌ Error loading models: {e}")
    raise e

# Load tile metadata
with open("tile_catalog.json", "r", encoding="utf-8") as f:
    tile_catalog = json.load(f)

with open("tile_sizes.json", "r", encoding="utf-8") as f:
    tile_sizes = json.load(f)

@app.route("/")
def home():
    return send_file("index.html")

@app.route('/recommend', methods=['POST'])
def recommend():
    try:
        data = request.get_json()

        required = ['tile_type', 'coverage', 'area', 'price_range']
        if not all(k in data for k in required):
            return jsonify({"error": "Missing required fields"}), 400

        tile_type = data['tile_type'].lower()
        if tile_type not in ['floor', 'wall']:
            return jsonify({"error": "Invalid tile type"}), 400

        validate_positive_number(data['coverage'], "coverage")
        validate_positive_number(data['area'], "area")

        pr = data['price_range']
        if (not isinstance(pr, list) or len(pr) != 2 or pr[0] < 0 or pr[1] <= 0 or pr[0] >= pr[1]):
            return jsonify({"error": "Invalid price range"}), 400

        features = prepare_features(data)
        xgb_pred = float(xgb_model.predict(xgb.DMatrix(features))[0])
        rf_pred = float(rf.predict_proba(features)[0][1])
        combined_score = (xgb_pred + rf_pred) / 2

        recommended = filter_products(
            tile_type=tile_type,
            min_price=pr[0],
            max_price=pr[1],
            preferred_sizes=data.get("preferred_sizes", []),
            min_score=0.5
        )

        return jsonify({
            "recommendation_score": round(combined_score, 3),
            "total_matches": len(recommended),
            "recommended_products": recommended[:5],
            "calculation": calculate_requirements(data['area'], data['coverage'])
        })

    except Exception as e:
        app.logger.error(f"Error in /recommend: {e}")
        return jsonify({"error": "Internal server error"}), 500

@app.route('/calculate', methods=['POST'])
def calculate():
    try:
        data = request.get_json()

        for k in ['tile_type', 'area', 'tile_size']:
            if k not in data:
                return jsonify({"error": f"Missing field: {k}"}), 400

        tile_type = data['tile_type'].lower()
        if tile_type not in ['floor', 'wall']:
            return jsonify({"error": "Invalid tile type"}), 400

        tile_size_key = data['tile_size']
        if tile_size_key not in tile_sizes:
            return jsonify({"error": "Invalid tile size"}), 400

        validate_positive_number(data['area'], "area")

        tile_info = tile_sizes[tile_size_key]
        area_per_tile = tile_info['length'] * tile_info['width']
        tiles_needed = math.ceil((data['area'] / area_per_tile) * 1.1)
        tiles_per_box = tile_info.get('tiles_per_box', 10)
        boxes_needed = math.ceil(tiles_needed / tiles_per_box)

        matching = [
            p for p in tile_catalog
            if p['type'].lower() == tile_type and p['size'] == tile_size_key
        ]

        return jsonify({
            "tile_type": tile_type,
            "area": data['area'],
            "tile_size": tile_size_key,
            "tiles_needed": tiles_needed,
            "boxes_needed": boxes_needed,
            "matching_products": matching[:3],
            "total_matches": len(matching)
        })

    except Exception as e:
        app.logger.error(f"Error in /calculate: {e}")
        return jsonify({"error": "Internal server error"}), 500

def prepare_features(data):
    tile_type_num = 0 if data['tile_type'] == 'floor' else 1
    price_per_sqft = data['price_range'][1] / data['coverage']
    budget_efficiency = data['coverage'] / data['price_range'][1]

    return np.array([[
        tile_type_num,
        data['area'],
        data['coverage'],
        data['price_range'][0],
        data['price_range'][1],
        price_per_sqft,
        budget_efficiency
    ]])

def filter_products(tile_type, min_price, max_price, preferred_sizes, min_score=0.5):
    results = []
    for p in tile_catalog:
        if (
            p['type'].lower() == tile_type and
            min_price <= p['price'] <= max_price and
            (not preferred_sizes or p['size'] in preferred_sizes)
        ):
            price_score = 1 - ((p['price'] - min_price) / (max_price - min_price + 1e-6))
            size_score = 1 if not preferred_sizes or p['size'] in preferred_sizes else 0.5
            score = (price_score + size_score) / 2
            if score >= min_score:
                results.append({**p, "recommendation_score": round(score, 2)})
    return sorted(results, key=lambda x: x['recommendation_score'], reverse=True)

def calculate_requirements(area, coverage):
    min_tiles = math.ceil(area / coverage)
    suggested = math.ceil(min_tiles * 1.1)
    return {
        "minimum_tiles": min_tiles,
        "suggested_tiles": suggested,
        "estimated_cost_range": [round(area * 3, 2), round(area * 10, 2)]
    }

def validate_positive_number(value, field):
    if not isinstance(value, (int, float)) or value <= 0:
        raise ValueError(f"{field} must be a positive number")

if __name__ == '__main__':
    app.run(host="0.0.0.0", port=5000, debug=True)