Tilo / app.py
Coots's picture
Update app.py
fc55797 verified
raw
history blame
6.03 kB
from flask import Flask, request, jsonify
import joblib
import numpy as np
import json
import math
app = Flask(_name_)
# Load models
xgb = joblib.load("xgb_model.pkl")
rf = joblib.load("rf_model.pkl")
# Load tile catalog and sizes
with open("tile_catalog.json", "r", encoding="utf-8") as f:
tile_catalog = json.load(f)
with open("tile_sizes.json", "r", encoding="utf-8") as f:
tile_sizes = json.load(f)
@app.route('/recommend', methods=['POST'])
def recommend():
"""
Endpoint for product recommendations
Expected JSON payload:
{
"tile_type": "floor"|"wall",
"coverage": float,
"area": float,
"price_range": [min, max],
"preferred_sizes": [size1, size2] (optional)
}
"""
try:
data = request.get_json()
# Validate input
required_fields = ['tile_type', 'coverage', 'area', 'price_range']
if not all(field in data for field in required_fields):
return jsonify({"error": "Missing required fields"}), 400
tile_type = data['tile_type'].lower()
if tile_type not in ['floor', 'wall']:
return jsonify({"error": "Invalid tile type. Use 'floor' or 'wall'"}), 400
# Feature engineering for ML prediction
features = prepare_features(data)
# Get predictions from both models
xgb_pred = xgb.predict_proba(features)[0][1]
rf_pred = rf.predict_proba(features)[0][1]
combined_score = (xgb_pred + rf_pred) / 2
# Filter products based on criteria
recommended_products = filter_products(
tile_type=tile_type,
min_price=data['price_range'][0],
max_price=data['price_range'][1],
preferred_sizes=data.get('preferred_sizes', []),
min_score=0.5 # Threshold for recommendation
)
# Prepare response
response = {
"recommendation_score": round(float(combined_score), 3),
"recommended_products": recommended_products[:5], # Return top 5
"calculation": calculate_requirements(data['area'], data['coverage'])
}
return jsonify(response)
except Exception as e:
return jsonify({"error": str(e)}), 500
@app.route('/calculate', methods=['POST'])
def calculate():
"""
Endpoint for tile calculation
Expected JSON payload:
{
"tile_type": "floor"|"wall",
"area": float,
"tile_size": "12x12"|etc (from tile_sizes.json)
}
"""
try:
data = request.get_json()
# Validate input
if 'tile_type' not in data or 'area' not in data or 'tile_size' not in data:
return jsonify({"error": "Missing required fields"}), 400
tile_type = data['tile_type'].lower()
if tile_type not in ['floor', 'wall']:
return jsonify({"error": "Invalid tile type"}), 400
if data['tile_size'] not in tile_sizes:
return jsonify({"error": "Invalid tile size"}), 400
# Perform calculation
tile_info = tile_sizes[data['tile_size']]
area_per_tile = tile_info['length'] * tile_info['width']
num_tiles = math.ceil((data['area'] / area_per_tile) * 1.1) # 10% buffer
num_boxes = math.ceil(num_tiles / tile_info.get('tiles_per_box', 10))
# Get matching products
matching_products = [
p for p in tile_catalog
if p['type'].lower() == tile_type and p['size'] == data['tile_size']
]
return jsonify({
"tile_type": tile_type,
"area": data['area'],
"tile_size": data['tile_size'],
"tiles_needed": num_tiles,
"boxes_needed": num_boxes,
"matching_products": matching_products[:3] # Return top 3 matches
})
except Exception as e:
return jsonify({"error": str(e)}), 500
def prepare_features(data):
"""Prepare feature vector for ML model prediction"""
tile_type_num = 0 if data['tile_type'] == 'floor' else 1
price_per_sqft = data['price_range'][1] / data['coverage'] # Using max price
budget_efficiency = data['coverage'] / data['price_range'][1]
return np.array([[
tile_type_num,
data['area'],
data['coverage'],
data['price_range'][0], # min price
data['price_range'][1], # max price
price_per_sqft,
budget_efficiency
]])
def filter_products(tile_type, min_price, max_price, preferred_sizes, min_score=0.5):
"""Filter products based on criteria"""
filtered = []
for product in tile_catalog:
if (product['type'].lower() == tile_type and
min_price <= product['price'] <= max_price and
(not preferred_sizes or product['size'] in preferred_sizes)):
# Calculate a simple score (could be enhanced)
price_score = 1 - ((product['price'] - min_price) / (max_price - min_price))
size_score = 1 if not preferred_sizes or product['size'] in preferred_sizes else 0.5
product_score = (price_score + size_score) / 2
if product_score >= min_score:
filtered.append({
**product,
"recommendation_score": round(product_score, 2)
})
# Sort by recommendation score
return sorted(filtered, key=lambda x: x['recommendation_score'], reverse=True)
def calculate_requirements(area, coverage):
"""Calculate basic requirements"""
return {
"minimum_tiles": math.ceil(area / coverage),
"suggested_tiles": math.ceil((area / coverage) * 1.1), # 10% buffer
"estimated_cost_range": [
round(area * 3, 2), # $3/sqft (example)
round(area * 10, 2) # $10/sqft (example)
]
}
if _name_ == '_main_':
app.run(host='0.0.0.0', port=5000, debug=True)