|
from flask import Flask, request, jsonify |
|
import joblib |
|
import numpy as np |
|
import json |
|
import math |
|
|
|
app = Flask(_name_) |
|
|
|
|
|
xgb = joblib.load("xgb_model.pkl") |
|
rf = joblib.load("rf_model.pkl") |
|
|
|
|
|
with open("tile_catalog.json", "r", encoding="utf-8") as f: |
|
tile_catalog = json.load(f) |
|
|
|
with open("tile_sizes.json", "r", encoding="utf-8") as f: |
|
tile_sizes = json.load(f) |
|
|
|
@app.route('/recommend', methods=['POST']) |
|
def recommend(): |
|
""" |
|
Endpoint for product recommendations |
|
Expected JSON payload: |
|
{ |
|
"tile_type": "floor"|"wall", |
|
"coverage": float, |
|
"area": float, |
|
"price_range": [min, max], |
|
"preferred_sizes": [size1, size2] (optional) |
|
} |
|
""" |
|
try: |
|
data = request.get_json() |
|
|
|
|
|
required_fields = ['tile_type', 'coverage', 'area', 'price_range'] |
|
if not all(field in data for field in required_fields): |
|
return jsonify({"error": "Missing required fields"}), 400 |
|
|
|
tile_type = data['tile_type'].lower() |
|
if tile_type not in ['floor', 'wall']: |
|
return jsonify({"error": "Invalid tile type. Use 'floor' or 'wall'"}), 400 |
|
|
|
|
|
features = prepare_features(data) |
|
|
|
|
|
xgb_pred = xgb.predict_proba(features)[0][1] |
|
rf_pred = rf.predict_proba(features)[0][1] |
|
combined_score = (xgb_pred + rf_pred) / 2 |
|
|
|
|
|
recommended_products = filter_products( |
|
tile_type=tile_type, |
|
min_price=data['price_range'][0], |
|
max_price=data['price_range'][1], |
|
preferred_sizes=data.get('preferred_sizes', []), |
|
min_score=0.5 |
|
) |
|
|
|
|
|
response = { |
|
"recommendation_score": round(float(combined_score), 3), |
|
"recommended_products": recommended_products[:5], |
|
"calculation": calculate_requirements(data['area'], data['coverage']) |
|
} |
|
|
|
return jsonify(response) |
|
|
|
except Exception as e: |
|
return jsonify({"error": str(e)}), 500 |
|
|
|
@app.route('/calculate', methods=['POST']) |
|
def calculate(): |
|
""" |
|
Endpoint for tile calculation |
|
Expected JSON payload: |
|
{ |
|
"tile_type": "floor"|"wall", |
|
"area": float, |
|
"tile_size": "12x12"|etc (from tile_sizes.json) |
|
} |
|
""" |
|
try: |
|
data = request.get_json() |
|
|
|
|
|
if 'tile_type' not in data or 'area' not in data or 'tile_size' not in data: |
|
return jsonify({"error": "Missing required fields"}), 400 |
|
|
|
tile_type = data['tile_type'].lower() |
|
if tile_type not in ['floor', 'wall']: |
|
return jsonify({"error": "Invalid tile type"}), 400 |
|
|
|
if data['tile_size'] not in tile_sizes: |
|
return jsonify({"error": "Invalid tile size"}), 400 |
|
|
|
|
|
tile_info = tile_sizes[data['tile_size']] |
|
area_per_tile = tile_info['length'] * tile_info['width'] |
|
num_tiles = math.ceil((data['area'] / area_per_tile) * 1.1) |
|
num_boxes = math.ceil(num_tiles / tile_info.get('tiles_per_box', 10)) |
|
|
|
|
|
matching_products = [ |
|
p for p in tile_catalog |
|
if p['type'].lower() == tile_type and p['size'] == data['tile_size'] |
|
] |
|
|
|
return jsonify({ |
|
"tile_type": tile_type, |
|
"area": data['area'], |
|
"tile_size": data['tile_size'], |
|
"tiles_needed": num_tiles, |
|
"boxes_needed": num_boxes, |
|
"matching_products": matching_products[:3] |
|
}) |
|
|
|
except Exception as e: |
|
return jsonify({"error": str(e)}), 500 |
|
|
|
def prepare_features(data): |
|
"""Prepare feature vector for ML model prediction""" |
|
tile_type_num = 0 if data['tile_type'] == 'floor' else 1 |
|
price_per_sqft = data['price_range'][1] / data['coverage'] |
|
budget_efficiency = data['coverage'] / data['price_range'][1] |
|
|
|
return np.array([[ |
|
tile_type_num, |
|
data['area'], |
|
data['coverage'], |
|
data['price_range'][0], |
|
data['price_range'][1], |
|
price_per_sqft, |
|
budget_efficiency |
|
]]) |
|
|
|
def filter_products(tile_type, min_price, max_price, preferred_sizes, min_score=0.5): |
|
"""Filter products based on criteria""" |
|
filtered = [] |
|
|
|
for product in tile_catalog: |
|
if (product['type'].lower() == tile_type and |
|
min_price <= product['price'] <= max_price and |
|
(not preferred_sizes or product['size'] in preferred_sizes)): |
|
|
|
|
|
price_score = 1 - ((product['price'] - min_price) / (max_price - min_price)) |
|
size_score = 1 if not preferred_sizes or product['size'] in preferred_sizes else 0.5 |
|
product_score = (price_score + size_score) / 2 |
|
|
|
if product_score >= min_score: |
|
filtered.append({ |
|
**product, |
|
"recommendation_score": round(product_score, 2) |
|
}) |
|
|
|
|
|
return sorted(filtered, key=lambda x: x['recommendation_score'], reverse=True) |
|
|
|
def calculate_requirements(area, coverage): |
|
"""Calculate basic requirements""" |
|
return { |
|
"minimum_tiles": math.ceil(area / coverage), |
|
"suggested_tiles": math.ceil((area / coverage) * 1.1), |
|
"estimated_cost_range": [ |
|
round(area * 3, 2), |
|
round(area * 10, 2) |
|
] |
|
} |
|
|
|
if _name_ == '_main_': |
|
app.run(host='0.0.0.0', port=5000, debug=True) |