GolemPII / app.py
cordwainersmith
v2
ecbe10b
raw
history blame
13 kB
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModelForTokenClassification
import time
import json
import pandas as pd
from datetime import datetime
import os
from typing import List, Dict, Tuple
import re
MODEL_PATH = "CordwainerSmith/GolemPII-v1"
ENTITY_COLORS = {
"PHONE_NUM": "#FF9999",
"ID_NUM": "#99FF99",
"CC_NUM": "#9999FF",
"BANK_ACCOUNT_NUM": "#FFFF99",
"FIRST_NAME": "#FF99FF",
"LAST_NAME": "#99FFFF",
"CITY": "#FFB366",
"STREET": "#B366FF",
"POSTAL_CODE": "#66FFB3",
"EMAIL": "#66B3FF",
"DATE": "#FFB3B3",
"CC_PROVIDER": "#B3FFB3",
}
EXAMPLE_SENTENCES = [
"שם מלא: תלמה אריאלי מספר תעודת זהות: 61453324-8 תאריך לידה: 15/09/1983 כתובת: ארלוזורוב 22 פתח תקווה מיקוד 2731711 אימייל: [email protected] טלפון: 054-8884771 בפגישה זו נדונו פתרונות טכנולוגיים חדשניים לשיפור תהליכי עבודה. המשתתף יתבקש להציג מצגת בנושא בפגישה הבאה אשר שילם ב 5326-1003-5299-5478 מסטרקארד עם הוראת קבע ל 11-77-352300",
]
MODEL_DETAILS = {
"name": "GolemPII-v1: Hebrew PII Detection Model",
"description": 'The <a href="https://huggingface.co/CordwainerSmith/GolemPII-v1" target="_blank">GolemPII model</a> was specifically designed to identify and categorize various types of personally identifiable information (PII) present in Hebrew text. Its core intended usage revolves around enhancing privacy protection and facilitating the process of data anonymization. This makes it a good candidate for applications and systems that handle sensitive data, such as legal documents, medical records, or any text data containing PII, where the automatic redaction or removal of such information is essential for ensuring compliance with data privacy regulations and safeguarding individuals\' personal information. The model can be deployed on-premise with a relatively small hardware footprint, making it suitable for organizations with limited computing resources or those prioritizing local data processing.\n\nThe model was trained on the <a href="https://huggingface.co/datasets/CordwainerSmith/GolemGuard" target="_blank">GolemGuard</a> dataset, a Hebrew language dataset comprising over 115,000 examples of PII entities and containing both real and synthetically generated text examples. This data represents various document types and communication formats commonly found in Israeli professional and administrative contexts. GolemGuard covers a wide range of document types and encompasses a diverse array of PII entities, making it ideal for training and evaluating PII detection models.',
"base_model": "xlm-roberta-base",
"training_data": "Custom Hebrew PII dataset",
"detected_pii_entities": [
"FIRST_NAME",
"LAST_NAME",
"STREET",
"CITY",
"PHONE_NUM",
"EMAIL",
"ID_NUM",
"BANK_ACCOUNT_NUM",
"CC_NUM",
"CC_PROVIDER",
"DATE",
"POSTAL_CODE",
],
}
class PIIMaskingModel:
def __init__(self, model_name: str):
self.model_name = model_name
hf_token = st.secrets["hf_token"]
self.tokenizer = AutoTokenizer.from_pretrained(
model_name, use_auth_token=hf_token
)
self.model = AutoModelForTokenClassification.from_pretrained(
model_name, use_auth_token=hf_token
)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(self.device)
self.model.eval()
def process_text(
self, text: str
) -> Tuple[str, float, str, List[str], List[str], List[Dict]]:
start_time = time.time()
tokenized_inputs = self.tokenizer(
text,
truncation=True,
padding=False,
return_tensors="pt",
return_offsets_mapping=True,
add_special_tokens=True,
)
input_ids = tokenized_inputs.input_ids.to(self.device)
attention_mask = tokenized_inputs.attention_mask.to(self.device)
offset_mapping = tokenized_inputs["offset_mapping"][0].tolist()
# Handle special tokens
offset_mapping[0] = None # <s> token
offset_mapping[-1] = None # </s> token
with torch.no_grad():
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)
predictions = outputs.logits.argmax(dim=-1).cpu().numpy()
predicted_labels = [
self.model.config.id2label[label_id] for label_id in predictions[0]
]
tokens = self.tokenizer.convert_ids_to_tokens(input_ids[0])
masked_text, colored_text, privacy_masks = self.mask_pii_in_sentence(
tokens, predicted_labels, text, offset_mapping
)
processing_time = time.time() - start_time
return (
masked_text,
processing_time,
colored_text,
tokens,
predicted_labels,
privacy_masks,
)
def _find_entity_span(
self,
i: int,
labels: List[str],
tokens: List[str],
offset_mapping: List[Tuple[int, int]],
) -> Tuple[int, str, int]:
current_entity = labels[i][2:] if labels[i].startswith("B-") else labels[i][2:]
j = i + 1
last_valid_end = offset_mapping[i][1] if offset_mapping[i] else None
while j < len(tokens):
if offset_mapping[j] is None:
j += 1
continue
next_label = labels[j]
if next_label.startswith("B-") and tokens[j].startswith("▁"):
break
if next_label.startswith("I-") and next_label[2:] != current_entity:
break
if next_label.startswith("I-") and next_label[2:] == current_entity:
last_valid_end = offset_mapping[j][1]
j += 1
elif next_label.startswith("B-") and not tokens[j].startswith("▁"):
last_valid_end = offset_mapping[j][1]
j += 1
else:
break
return j, current_entity, last_valid_end
def mask_pii_in_sentence(
self,
tokens: List[str],
labels: List[str],
original_text: str,
offset_mapping: List[Tuple[int, int]],
) -> Tuple[str, str, List[Dict]]:
privacy_masks = []
current_pos = 0
masked_text_parts = []
colored_text_parts = []
i = 0
while i < len(tokens):
if offset_mapping[i] is None:
i += 1
continue
current_label = labels[i]
if current_label.startswith(("B-", "I-")):
start_char = offset_mapping[i][0]
next_pos, entity_type, last_valid_end = self._find_entity_span(
i, labels, tokens, offset_mapping
)
if current_pos < start_char:
text_before = original_text[current_pos:start_char]
masked_text_parts.append(text_before)
colored_text_parts.append(text_before)
entity_value = original_text[start_char:last_valid_end]
mask = self._get_mask_for_entity(entity_type)
privacy_masks.append(
{
"label": entity_type,
"start": start_char,
"end": last_valid_end,
"value": entity_value,
"label_index": len(privacy_masks) + 1,
}
)
masked_text_parts.append(mask)
color = ENTITY_COLORS.get(entity_type, "#CCCCCC")
colored_text_parts.append(
f'<span style="background-color: {color}; color: black; padding: 2px; border-radius: 3px;">{mask}</span>'
)
current_pos = last_valid_end
i = next_pos
else:
if offset_mapping[i] is not None:
start_char = offset_mapping[i][0]
end_char = offset_mapping[i][1]
if current_pos < end_char:
text_chunk = original_text[current_pos:end_char]
masked_text_parts.append(text_chunk)
colored_text_parts.append(text_chunk)
current_pos = end_char
i += 1
if current_pos < len(original_text):
remaining_text = original_text[current_pos:]
masked_text_parts.append(remaining_text)
colored_text_parts.append(remaining_text)
return ("".join(masked_text_parts), "".join(colored_text_parts), privacy_masks)
def _get_mask_for_entity(self, entity_type: str) -> str:
return {
"PHONE_NUM": "[טלפון]",
"ID_NUM": "[ת.ז]",
"CC_NUM": "[כרטיס אשראי]",
"BANK_ACCOUNT_NUM": "[חשבון בנק]",
"FIRST_NAME": "[שם פרטי]",
"LAST_NAME": "[שם משפחה]",
"CITY": "[עיר]",
"STREET": "[רחוב]",
"POSTAL_CODE": "[מיקוד]",
"EMAIL": "[אימייל]",
"DATE": "[תאריך]",
"CC_PROVIDER": "[ספק כרטיס אשראי]",
"BANK": "[בנק]",
}.get(entity_type, f"[{entity_type}]")
def main():
st.set_page_config(layout="wide")
st.title("🗿 GolemPII: Hebrew PII Masking Application 🗿")
st.markdown(
"""
<style>
.rtl { direction: rtl; text-align: right; }
.entity-legend { padding: 5px; margin: 2px; border-radius: 3px; display: inline-block; }
.masked-text {
direction: rtl;
text-align: right;
line-height: 2;
padding: 10px;
background-color: #f6f8fa;
border-radius: 5px;
color: black;
white-space: pre-wrap;
}
.main h3 {
margin-bottom: 10px;
}
textarea {
direction: rtl !important;
text-align: right !important;
}
.stTextArea label {
direction: ltr !important;
text-align: left !important;
}
</style>
""",
unsafe_allow_html=True,
)
# Sidebar with model details
st.sidebar.markdown(
f"""
<div>
<h2>{MODEL_DETAILS['name']}</h2>
<p>{MODEL_DETAILS['description']}</p>
<h3>Supported PII Entities</h3>
<ul>
{" ".join([f'<li><span style="background-color: {ENTITY_COLORS.get(entity, "#CCCCCC")}; color: black; padding: 3px 5px; border-radius: 3px; margin-right: 5px;">{entity}</span></li>' for entity in MODEL_DETAILS['detected_pii_entities']])}
</ul>
</div>
""",
unsafe_allow_html=True,
)
text_input = st.text_area(
"Enter text to mask (separate multiple texts with commas):",
value="\n".join(EXAMPLE_SENTENCES),
height=200,
)
show_json = st.checkbox("Show JSON Output", value=True)
if st.button("Process Text"):
texts = [text.strip() for text in text_input.split(",") if text.strip()]
model = PIIMaskingModel()
for text in texts:
st.markdown(
'<h3 style="text-align: center;">Original Text</h3>',
unsafe_allow_html=True,
)
st.markdown(f'<div class="rtl">{text}</div>', unsafe_allow_html=True)
(
masked_text,
processing_time,
colored_text,
tokens,
predicted_labels,
privacy_masks,
) = model.process_text(text)
st.markdown(
'<h3 style="text-align: center;">Masked Text</h3>',
unsafe_allow_html=True,
)
st.markdown(
f'<div class="masked-text">{colored_text}</div>', unsafe_allow_html=True
)
st.markdown(f"Processing Time: {processing_time:.3f} seconds")
if show_json:
st.json(
{
"original": text,
"masked": masked_text,
"processing_time": processing_time,
"tokens": tokens,
"token_classes": predicted_labels,
"privacy_mask": privacy_masks,
"span_labels": [
[m["start"], m["end"], m["label"]] for m in privacy_masks
],
}
)
st.markdown("---")
if __name__ == "__main__":
main()