File size: 2,805 Bytes
9f9ad20
 
 
 
 
 
 
9df8442
9f9ad20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9df8442
 
9f9ad20
 
9df8442
 
 
 
 
65f73c3
9f9ad20
9df8442
 
9f9ad20
9df8442
 
 
 
 
 
9f9ad20
 
9df8442
 
 
 
 
9f9ad20
 
 
 
 
 
 
 
9df8442
 
 
9f9ad20
 
 
 
9df8442
9f9ad20
 
 
1c9801c
 
9f9ad20
 
 
 
 
 
 
9df8442
 
 
 
9f9ad20
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
from dataclasses import dataclass, make_dataclass
from enum import Enum

import pandas as pd

from src.about import Tasks


def fields(raw_class):
    return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]


# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False
    never_hidden: bool = False


# Leaderboard columns
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent(
    "T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent(
    "Model", "markdown", True, never_hidden=True)])
# Scores
# auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
for task in Tasks:
    auto_eval_column_dict.append(
        [task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
# Model information
auto_eval_column_dict.append(
    ["model_type", ColumnContent, ColumnContent("Type", "str", False)])
auto_eval_column_dict.append(
    ["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
auto_eval_column_dict.append(
    ["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])

# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass(
    "AutoEvalColumn", auto_eval_column_dict, frozen=True)

# For the queue columns in the submission tab


@dataclass(frozen=True)
class EvalQueueColumn:  # Queue column
    model = ColumnContent("model", "markdown", True)
    revision = ColumnContent("revision", "str", True)
    private = ColumnContent("private", "bool", True)
    status = ColumnContent("status", "str", True)

# All the model information that we might need


@dataclass
class ModelDetails:
    name: str
    display_name: str = ""
    symbol: str = ""  # emoji


class ModelType(Enum):
    OP = ModelDetails(name="open", symbol="🟢")
    CL = ModelDetails(name="closed", symbol="⭕")
    Unknown = ModelDetails(name="", symbol="?")

    def to_str(self, separator=" "):
        return f"{self.value.symbol}{separator}{self.value.name}"

    @staticmethod
    def from_str(type):
        if "open" in type or "🟢" in type:
            return ModelType.OP
        if "closed" in type or "⭕" in type:
            return ModelType.CL
        return ModelType.Unknown


# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]

EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]

BENCHMARK_COLS = [t.value.col_name for t in Tasks]