Commit
Β·
a2afb6d
1
Parent(s):
31fff2a
load model in session
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import logging
|
|
4 |
import gradio as gr
|
5 |
logging.basicConfig(level=logging.INFO)
|
6 |
from src.utils import generate_centered_gaussian_noise
|
7 |
-
from src.demo import resize,plot_flow,plot_diff,load_model_diff,load_model_flow_localized,load_model_flow_standard
|
8 |
|
9 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
10 |
img_shape = (1, 28, 28)
|
@@ -17,15 +17,15 @@ alphas = 1.0 - betas
|
|
17 |
alphas_cumprod = torch.cumprod(alphas, dim=0).to(device)
|
18 |
|
19 |
|
20 |
-
|
21 |
-
|
22 |
|
23 |
@torch.no_grad()
|
24 |
def generate_diffusion_intermediates_streaming(label):
|
25 |
logging.info("π Starting Diffusion Generation")
|
26 |
total_start = time.time()
|
27 |
|
28 |
-
model_diff = load_model_diff(ENV,device=device)
|
29 |
|
30 |
|
31 |
x = torch.randn(1, *img_shape).to(device)
|
@@ -90,11 +90,11 @@ def generate_flow_intermediates_streaming(label, noise_type):
|
|
90 |
# Select noise and model
|
91 |
if noise_type == "Localized":
|
92 |
x = generate_centered_gaussian_noise((1, *img_shape)).to(device)
|
93 |
-
model_flow =
|
94 |
|
95 |
else:
|
96 |
x = torch.randn(1, *img_shape).to(device)
|
97 |
-
model_flow = load_model_flow_standard(ENV,device=device)
|
98 |
|
99 |
y = torch.full((1,), label, dtype=torch.long, device=device)
|
100 |
steps = 50
|
|
|
4 |
import gradio as gr
|
5 |
logging.basicConfig(level=logging.INFO)
|
6 |
from src.utils import generate_centered_gaussian_noise
|
7 |
+
from src.demo import resize,plot_flow,plot_diff,load_models,load_model_diff,load_model_flow_localized,load_model_flow_standard
|
8 |
|
9 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
10 |
img_shape = (1, 28, 28)
|
|
|
17 |
alphas_cumprod = torch.cumprod(alphas, dim=0).to(device)
|
18 |
|
19 |
|
20 |
+
model_diff,model_flow_standard,model_flow_localized = load_models(ENV,device=device)
|
21 |
+
###not catching models because of memory limit in free deployment
|
22 |
|
23 |
@torch.no_grad()
|
24 |
def generate_diffusion_intermediates_streaming(label):
|
25 |
logging.info("π Starting Diffusion Generation")
|
26 |
total_start = time.time()
|
27 |
|
28 |
+
#model_diff = load_model_diff(ENV,device=device)
|
29 |
|
30 |
|
31 |
x = torch.randn(1, *img_shape).to(device)
|
|
|
90 |
# Select noise and model
|
91 |
if noise_type == "Localized":
|
92 |
x = generate_centered_gaussian_noise((1, *img_shape)).to(device)
|
93 |
+
model_flow = model_flow_localized # load_model_flow_localized(ENV,device=device)
|
94 |
|
95 |
else:
|
96 |
x = torch.randn(1, *img_shape).to(device)
|
97 |
+
model_flow = model_flow_standard #load_model_flow_standard(ENV,device=device)
|
98 |
|
99 |
y = torch.full((1,), label, dtype=torch.long, device=device)
|
100 |
steps = 50
|