File size: 2,021 Bytes
0caec9c
e2701ca
 
 
 
5e41748
 
e2701ca
222eba8
5e41748
f95bb71
5e41748
e2701ca
5e41748
e2701ca
222eba8
e2701ca
 
 
 
 
 
222eba8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e41748
 
 
 
222eba8
 
 
 
5e41748
222eba8
 
5e41748
 
222eba8
 
 
 
 
 
 
5e41748
 
222eba8
5e41748
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import gradio as gr
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import T5ForConditionalGeneration, T5Tokenizer
import torch
import threading
import uvicorn

# 1. Load model & tokenizer
model_path = "./t5-summarizer"
tokenizer = T5Tokenizer.from_pretrained(model_path, legacy=False)
model = T5ForConditionalGeneration.from_pretrained(model_path)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

# 2. FastAPI setup
app = FastAPI()
class TextInput(BaseModel):
    text: str

@app.post("/summarize/")
def summarize_text(input: TextInput):
    inputs = tokenizer(
        "summarize: " + input.text.replace("\n", " "),
        return_tensors="pt",
        max_length=512,
        truncation=True
    ).to(device)
    summary_ids = model.generate(
        inputs.input_ids,
        max_length=150,
        min_length=30,
        length_penalty=2.0,
        num_beams=4,
        early_stopping=True
    )
    summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
    return {"summary": summary}

def run_fastapi():
    uvicorn.run(app, host="0.0.0.0", port=8000)

# 3. Gradio UI
def summarize_ui(text):
    return summarize_text(TextInput(text=text))["summary"]

iface = gr.Interface(
    fn=summarize_ui,
    inputs=gr.Textbox(lines=10, placeholder="Paste your text here..."),
    outputs=gr.Textbox(label="Summary"),
    title="Text Summarizer",
    description="Fine-tuned T5 summarizer on CNN/DailyMail v3.0.0",
    examples=[
        ["Scientists have recently discovered a new species of frog in the Amazon rainforest..."],
        ["The global economy is expected to grow at a slower pace this year..."],
        ["In a thrilling final match, the underdog team scored a last-minute goal..."]
    ],
    allow_flagging="never"      # Disable flagging properly :contentReference[oaicite:3]{index=3}
)

# 4. Run both servers
threading.Thread(target=run_fastapi, daemon=True).start()
iface.launch(server_name="0.0.0.0", server_port=7860)