Spaces:
Sleeping
Sleeping
File size: 1,671 Bytes
0caec9c e2701ca 5e41748 e2701ca 5e41748 f95bb71 5e41748 e2701ca 5e41748 e2701ca 5e41748 e2701ca 5e41748 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import T5ForConditionalGeneration, T5Tokenizer
import torch
import threading
import uvicorn
# Load model & tokenizer
model_path = "./t5-summarizer"
tokenizer = T5Tokenizer.from_pretrained(model_path, legacy=False)
model = T5ForConditionalGeneration.from_pretrained(model_path)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# FastAPI setup
app = FastAPI()
class TextInput(BaseModel):
text: str
@app.post("/summarize/")
def summarize_text(input: TextInput):
inputs = tokenizer("summarize: " + input.text.replace("\n"," "),
return_tensors="pt", max_length=512, truncation=True)
outputs = model.generate(inputs.input_ids.to(device),
max_length=150, min_length=30,
length_penalty=2.0, num_beams=4, early_stopping=True)
return {"summary": tokenizer.decode(outputs[0], skip_special_tokens=True)}
def run_fastapi():
uvicorn.run(app, host="0.0.0.0", port=8000)
# Gradio UI
iface = gr.Interface(
fn=lambda text: summarize_text(TextInput(text=text))["summary"],
inputs=gr.Textbox(lines=10, placeholder="Paste text here..."),
outputs=gr.Textbox(label="Summary"),
title="Text Summarizer",
description="Fine-tuned T5 summarizer",
flagging_mode="never", # Disable flagging
examples=[["Your example text here..."]] # Pre-load examples
)
# Start FastAPI in background, then launch Gradio
threading.Thread(target=run_fastapi, daemon=True).start()
iface.launch(server_name="0.0.0.0", server_port=7860)
|