Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,133 +1,44 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import pipeline
|
| 3 |
-
import torch
|
| 4 |
|
| 5 |
-
#
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
model="Curative/t5-summarizer-cnn",
|
| 15 |
-
framework="pt"
|
| 16 |
-
)
|
| 17 |
-
return summarizer
|
| 18 |
-
|
| 19 |
-
def get_sentiment():
|
| 20 |
-
global sentiment
|
| 21 |
-
if sentiment is None:
|
| 22 |
-
sentiment = pipeline(
|
| 23 |
-
"sentiment-analysis",
|
| 24 |
-
model="distilbert-base-uncased-finetuned-sst-2-english",
|
| 25 |
-
framework="pt"
|
| 26 |
-
)
|
| 27 |
-
return sentiment
|
| 28 |
-
|
| 29 |
-
def get_classifier():
|
| 30 |
-
global classifier
|
| 31 |
-
if classifier is None:
|
| 32 |
-
classifier = pipeline(
|
| 33 |
-
"zero-shot-classification",
|
| 34 |
-
model="facebook/bart-large-mnli",
|
| 35 |
-
framework="pt"
|
| 36 |
-
)
|
| 37 |
-
return classifier
|
| 38 |
-
|
| 39 |
-
def get_ner():
|
| 40 |
-
global ner, ner_tokenizer
|
| 41 |
-
if ner is None:
|
| 42 |
-
# Load Fast tokenizer explicitly for proper aggregation
|
| 43 |
-
ner_tokenizer = AutoTokenizer.from_pretrained(
|
| 44 |
-
"elastic/distilbert-base-uncased-finetuned-conll03-english",
|
| 45 |
-
use_fast=True
|
| 46 |
-
)
|
| 47 |
-
ner = pipeline(
|
| 48 |
-
"ner",
|
| 49 |
-
model="elastic/distilbert-base-uncased-finetuned-conll03-english",
|
| 50 |
-
tokenizer=ner_tokenizer,
|
| 51 |
-
aggregation_strategy="simple",
|
| 52 |
-
framework="pt"
|
| 53 |
-
)
|
| 54 |
-
return ner
|
| 55 |
-
|
| 56 |
-
# —— Helper functions —— #
|
| 57 |
-
def chunk_and_summarize(text: str) -> str:
|
| 58 |
-
"""Split on sentences into ≤1,000 char chunks, summarize each, then join."""
|
| 59 |
-
summarizer = get_summarizer()
|
| 60 |
-
max_chunk = 1000
|
| 61 |
-
sentences = text.split(". ")
|
| 62 |
-
chunks, current = [], ""
|
| 63 |
-
for sent in sentences:
|
| 64 |
-
# +2 accounts for the period and space
|
| 65 |
-
if len(current) + len(sent) + 2 <= max_chunk:
|
| 66 |
-
current += sent + ". "
|
| 67 |
-
else:
|
| 68 |
-
chunks.append(current.strip())
|
| 69 |
-
current = sent + ". "
|
| 70 |
-
if current:
|
| 71 |
-
chunks.append(current.strip())
|
| 72 |
-
|
| 73 |
-
summaries = []
|
| 74 |
-
for chunk in chunks:
|
| 75 |
-
part = summarizer(
|
| 76 |
-
chunk,
|
| 77 |
-
max_length=150,
|
| 78 |
-
min_length=40,
|
| 79 |
-
do_sample=False
|
| 80 |
-
)[0]["summary_text"]
|
| 81 |
-
summaries.append(part)
|
| 82 |
-
return " ".join(summaries)
|
| 83 |
-
|
| 84 |
-
def merge_entities(ents):
|
| 85 |
-
"""Merge sub‑word tokens (##…) into full words."""
|
| 86 |
-
merged = []
|
| 87 |
-
for e in ents:
|
| 88 |
-
w, t = e["word"], e["entity_group"]
|
| 89 |
-
if w.startswith("##") and merged:
|
| 90 |
-
merged[-1]["word"] += w.replace("##", "")
|
| 91 |
-
else:
|
| 92 |
-
merged.append({"word": w, "type": t})
|
| 93 |
-
return merged
|
| 94 |
|
| 95 |
def process(text, features):
|
| 96 |
-
|
| 97 |
if "Summarization" in features:
|
| 98 |
-
|
|
|
|
| 99 |
if "Sentiment" in features:
|
| 100 |
-
|
| 101 |
-
|
| 102 |
if "Classification" in features:
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
cls = get_classifier()(text, candidate_labels=labels)
|
| 106 |
-
# Zip & sort
|
| 107 |
-
pairs = sorted(
|
| 108 |
-
zip(cls["labels"], cls["scores"]),
|
| 109 |
-
key=lambda x: x[1],
|
| 110 |
-
reverse=True
|
| 111 |
-
)
|
| 112 |
-
out["classification"] = [
|
| 113 |
-
{"label": lbl, "score": scr} for lbl, scr in pairs
|
| 114 |
-
]
|
| 115 |
if "Entities" in features:
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
return
|
| 119 |
|
| 120 |
-
#
|
| 121 |
with gr.Blocks() as demo:
|
| 122 |
-
gr.Markdown("## 🛠️ Multi
|
| 123 |
-
inp = gr.Textbox(lines=
|
| 124 |
feats = gr.CheckboxGroup(
|
| 125 |
-
["Summarization","Sentiment","Classification","Entities"],
|
| 126 |
label="Select features to run"
|
| 127 |
)
|
| 128 |
btn = gr.Button("Run")
|
| 129 |
out = gr.JSON(label="Results")
|
| 130 |
-
|
| 131 |
btn.click(process, [inp, feats], out)
|
| 132 |
|
| 133 |
demo.queue(api_open=True).launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
|
|
|
| 3 |
|
| 4 |
+
# Initialize pipelines
|
| 5 |
+
sentiment_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
| 6 |
+
classification_pipeline = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
| 7 |
+
ner_pipeline = pipeline("ner", model="dslim/bert-base-NER", aggregation_strategy="simple")
|
| 8 |
+
summarization_pipeline = pipeline("summarization", model="facebook/bart-large-cnn")
|
| 9 |
|
| 10 |
+
# Define candidate labels for classification
|
| 11 |
+
candidate_labels = [
|
| 12 |
+
"technology", "sports", "business", "politics",
|
| 13 |
+
"health", "science", "travel", "entertainment"
|
| 14 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
def process(text, features):
|
| 17 |
+
result = {}
|
| 18 |
if "Summarization" in features:
|
| 19 |
+
summary = summarization_pipeline(text, max_length=150, min_length=40, do_sample=False)
|
| 20 |
+
result["summary"] = summary[0]["summary_text"]
|
| 21 |
if "Sentiment" in features:
|
| 22 |
+
sentiment = sentiment_pipeline(text)[0]
|
| 23 |
+
result["sentiment"] = {"label": sentiment["label"], "score": sentiment["score"]}
|
| 24 |
if "Classification" in features:
|
| 25 |
+
classification = classification_pipeline(text, candidate_labels=candidate_labels)
|
| 26 |
+
result["classification"] = dict(zip(classification["labels"], classification["scores"]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
if "Entities" in features:
|
| 28 |
+
entities = ner_pipeline(text)
|
| 29 |
+
result["entities"] = [{"word": entity["word"], "type": entity["entity_group"]} for entity in entities]
|
| 30 |
+
return result
|
| 31 |
|
| 32 |
+
# Build Gradio interface
|
| 33 |
with gr.Blocks() as demo:
|
| 34 |
+
gr.Markdown("## 🛠️ Multi-Feature NLP Service")
|
| 35 |
+
inp = gr.Textbox(lines=6, placeholder="Enter your text here…")
|
| 36 |
feats = gr.CheckboxGroup(
|
| 37 |
+
["Summarization", "Sentiment", "Classification", "Entities"],
|
| 38 |
label="Select features to run"
|
| 39 |
)
|
| 40 |
btn = gr.Button("Run")
|
| 41 |
out = gr.JSON(label="Results")
|
|
|
|
| 42 |
btn.click(process, [inp, feats], out)
|
| 43 |
|
| 44 |
demo.queue(api_open=True).launch()
|