Update app.py
Browse files
app.py
CHANGED
@@ -2,20 +2,17 @@ import gradio as gr
|
|
2 |
from transformers import LlamaTokenizer, LlamaForCausalLM
|
3 |
import torch
|
4 |
|
5 |
-
# Load the fine-tuned model and tokenizer
|
6 |
-
try:
|
7 |
-
tokenizer = LlamaTokenizer.from_pretrained("./fine_tuned_llama2")
|
8 |
-
model = LlamaForCausalLM.from_pretrained("./fine_tuned_llama2")
|
9 |
-
model.eval()
|
10 |
-
print("Model and tokenizer loaded successfully.")
|
11 |
-
except Exception as e:
|
12 |
-
print(f"Error loading model or tokenizer: {e}")
|
13 |
-
|
14 |
# Function to predict fraud based on text input
|
15 |
def predict(input_text):
|
16 |
if not input_text:
|
17 |
return "Please enter some text to analyze."
|
|
|
18 |
try:
|
|
|
|
|
|
|
|
|
|
|
19 |
# Tokenize input
|
20 |
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, padding="max_length", truncation=True)
|
21 |
# Generate output
|
|
|
2 |
from transformers import LlamaTokenizer, LlamaForCausalLM
|
3 |
import torch
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
# Function to predict fraud based on text input
|
6 |
def predict(input_text):
|
7 |
if not input_text:
|
8 |
return "Please enter some text to analyze."
|
9 |
+
|
10 |
try:
|
11 |
+
# Load the fine-tuned model and tokenizer inside the function
|
12 |
+
tokenizer = LlamaTokenizer.from_pretrained("./fine_tuned_llama2")
|
13 |
+
model = LlamaForCausalLM.from_pretrained("./fine_tuned_llama2")
|
14 |
+
model.eval()
|
15 |
+
|
16 |
# Tokenize input
|
17 |
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, padding="max_length", truncation=True)
|
18 |
# Generate output
|