Spaces:
Sleeping
Sleeping
import streamlit as st | |
import requests | |
st.title("SuperKart Sales Predictor") | |
# Input fields for product and store data | |
Product_Weight = st.number_input("Product Weight", min_value=0.0, value=12.66) | |
Product_Sugar_Content = st.selectbox("Product Sugar Content", ["Low Sugar", "Regular", "No Sugar"]) | |
Product_Allocated_Area = st.number_input("Product Allocated Area", min_value=0.0, value=20.0) | |
Product_MRP = st.number_input("Product MRP", min_value=0.0, value=100.0) | |
Store_Size = st.selectbox("Store Size", ["Small", "Medium", "High"]) | |
Store_Location_City_Type = st.selectbox("Store Location City Type", ["Urban", "Semi-Urban", "Tier 3"]) | |
Store_Type = st.selectbox("Store Type", ["Type 1", "Type 2", "Type 3", "Type 4"]) | |
Product_Id_char = st.selectbox("Product ID Prefix", ["FD", "DR", "NC"]) # Example prefixes | |
Store_Age_Years = st.number_input("Store Age (Years)", min_value=0, value=10) | |
Product_Type_Category = st.selectbox("Product Type Category", ["Food", "Drinks", "Non-Consumable"]) # Example categories | |
# Prepare data for POST request | |
product_data = { | |
"Product_Weight": Product_Weight, | |
"Product_Sugar_Content": Product_Sugar_Content, | |
"Product_Allocated_Area": Product_Allocated_Area, | |
"Product_MRP": Product_MRP, | |
"Store_Size": Store_Size, | |
"Store_Location_City_Type": Store_Location_City_Type, | |
"Store_Type": Store_Type, | |
"Product_Id_char": Product_Id_char, | |
"Store_Age_Years": Store_Age_Years, | |
"Product_Type_Category": Product_Type_Category | |
} | |
# Predict button and API call | |
if st.button("Predict", type='primary'): | |
response = requests.post( | |
"https://DD8943/superkart-regression-app.hf.space/v1/predict", | |
json=product_data | |
) | |
if response.status_code == 200: | |
result = response.json() | |
predicted_sales = result["Sales"] | |
st.write(f"Predicted Product Store Sales Total: ₹{predicted_sales:.2f}") | |
else: | |
st.error("Error in API request") | |