Spaces:
Runtime error
Runtime error
# Import necessary libraries | |
import numpy as np | |
import joblib # For loading the serialized model | |
import pandas as pd # For data manipulation | |
from flask import Flask, request, jsonify # For creating the Flask API | |
# Initialize Flask app with a name | |
superkart_api = Flask("superkart") | |
# Load the trained sales prediction model | |
model = joblib.load("backend/final_model.joblib") | |
# Define a route for the home page | |
def home(): | |
return "Welcome to the SuperKart Sales Prediction API!" | |
# Define an endpoint to predict sales for a single product-store combination | |
def predict_sales(): | |
# Get JSON data from the request | |
data = request.get_json() | |
# Extract relevant features from the input data. The order of the column names matters. | |
sample = { | |
'Product_Weight': data['Product_Weight'], | |
'Product_Sugar_Content': data['Product_Sugar_Content'], | |
'Product_Allocated_Area': data['Product_Allocated_Area'], | |
'Product_MRP': data['Product_MRP'], | |
'Store_Size': data['Store_Size'], | |
'Store_Location_City_Type': data['Store_Location_City_Type'], | |
'Store_Type': data['Store_Type'], | |
'Product_Id_char': data['Product_Id_char'], | |
'Store_Age_Years': data['Store_Age_Years'], | |
'Product_Type_Category': data['Product_Type_Category'] | |
} | |
# Convert the extracted data into a DataFrame | |
input_data = pd.DataFrame([sample]) | |
# Make a sales prediction using the trained model | |
prediction = model.predict(input_data).tolist()[0] | |
# Return the prediction as a JSON response | |
return jsonify({'Sales': prediction}) | |
# Run the Flask app in debug mode | |
if __name__ == '__main__': | |
superkart_api.run(debug=True) | |