DD8943's picture
Upload folder using huggingface_hub
a08f3f8 verified
# Import necessary libraries
import numpy as np
import joblib # For loading the serialized model
import pandas as pd # For data manipulation
from flask import Flask, request, jsonify # For creating the Flask API
# Initialize Flask app with a name
superkart_api = Flask("superkart")
# Load the trained sales prediction model
model = joblib.load("backend/final_model.joblib")
# Define a route for the home page
@superkart_api.get('/')
def home():
return "Welcome to the SuperKart Sales Prediction API!"
# Define an endpoint to predict sales for a single product-store combination
@superkart_api.post('/v1/predict')
def predict_sales():
# Get JSON data from the request
data = request.get_json()
# Extract relevant features from the input data. The order of the column names matters.
sample = {
'Product_Weight': data['Product_Weight'],
'Product_Sugar_Content': data['Product_Sugar_Content'],
'Product_Allocated_Area': data['Product_Allocated_Area'],
'Product_MRP': data['Product_MRP'],
'Store_Size': data['Store_Size'],
'Store_Location_City_Type': data['Store_Location_City_Type'],
'Store_Type': data['Store_Type'],
'Product_Id_char': data['Product_Id_char'],
'Store_Age_Years': data['Store_Age_Years'],
'Product_Type_Category': data['Product_Type_Category']
}
# Convert the extracted data into a DataFrame
input_data = pd.DataFrame([sample])
# Make a sales prediction using the trained model
prediction = model.predict(input_data).tolist()[0]
# Return the prediction as a JSON response
return jsonify({'Sales': prediction})
# Run the Flask app in debug mode
if __name__ == '__main__':
superkart_api.run(debug=True)