Spaces:
Sleeping
Sleeping
Commit
·
3d71f2e
1
Parent(s):
0bae633
Update tinyllama_inference.py with improved evaluation and performance
Browse files- tinyllama_inference.py +18 -17
tinyllama_inference.py
CHANGED
|
@@ -2,37 +2,39 @@ import json
|
|
| 2 |
import re
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
|
|
|
|
|
|
|
|
|
|
| 5 |
def load_model():
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
| 10 |
return tokenizer, model
|
| 11 |
|
| 12 |
def evaluate_code(question, code):
|
| 13 |
-
# Refined prompt to
|
| 14 |
prompt = f"""You are an expert code evaluator.
|
| 15 |
-
Evaluate the
|
| 16 |
-
Return ONLY a JSON object with two keys:
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
Problem: "{question}"
|
| 21 |
Solution: "{code}"
|
| 22 |
"""
|
| 23 |
-
# Load model and tokenizer.
|
| 24 |
tokenizer, model = load_model()
|
| 25 |
-
# Generate a response with reduced max tokens and a lower temperature for determinism.
|
| 26 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 27 |
outputs = model.generate(
|
| 28 |
**inputs,
|
| 29 |
-
max_new_tokens=
|
| 30 |
-
temperature=0.
|
| 31 |
-
pad_token_id=tokenizer.eos_token_id
|
|
|
|
| 32 |
)
|
| 33 |
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 34 |
|
| 35 |
-
# Attempt to extract the JSON object from the response.
|
| 36 |
match = re.search(r'\{.*\}', response_text)
|
| 37 |
if match:
|
| 38 |
json_text = match.group(0)
|
|
@@ -45,7 +47,6 @@ Solution: "{code}"
|
|
| 45 |
|
| 46 |
return result
|
| 47 |
|
| 48 |
-
# For direct testing from the command line.
|
| 49 |
if __name__ == "__main__":
|
| 50 |
import sys
|
| 51 |
if len(sys.argv) < 3:
|
|
|
|
| 2 |
import re
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
|
| 5 |
+
# Global variables to cache the model and tokenizer
|
| 6 |
+
tokenizer, model = None, None
|
| 7 |
+
|
| 8 |
def load_model():
|
| 9 |
+
global tokenizer, model
|
| 10 |
+
if tokenizer is None or model is None:
|
| 11 |
+
model_name = "Salesforce/codegen-350M-mono"
|
| 12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 13 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 14 |
return tokenizer, model
|
| 15 |
|
| 16 |
def evaluate_code(question, code):
|
| 17 |
+
# Refined prompt instructing the model to output exactly valid JSON.
|
| 18 |
prompt = f"""You are an expert code evaluator.
|
| 19 |
+
Evaluate the following solution for the given problem.
|
| 20 |
+
Return ONLY a JSON object with exactly two keys:
|
| 21 |
+
"stars": an integer between 0 and 5 (0 means completely incorrect, 5 means excellent).
|
| 22 |
+
"feedback": a concise message.
|
| 23 |
+
Output must be exactly valid JSON and nothing else.
|
| 24 |
Problem: "{question}"
|
| 25 |
Solution: "{code}"
|
| 26 |
"""
|
|
|
|
| 27 |
tokenizer, model = load_model()
|
|
|
|
| 28 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 29 |
outputs = model.generate(
|
| 30 |
**inputs,
|
| 31 |
+
max_new_tokens=50,
|
| 32 |
+
temperature=0.0,
|
| 33 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 34 |
+
do_sample=False
|
| 35 |
)
|
| 36 |
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 37 |
|
|
|
|
| 38 |
match = re.search(r'\{.*\}', response_text)
|
| 39 |
if match:
|
| 40 |
json_text = match.group(0)
|
|
|
|
| 47 |
|
| 48 |
return result
|
| 49 |
|
|
|
|
| 50 |
if __name__ == "__main__":
|
| 51 |
import sys
|
| 52 |
if len(sys.argv) < 3:
|