File size: 8,981 Bytes
bcdac9f 2fa7d8f cefc12a 43ba6e3 2fa7d8f bcdac9f 2fa7d8f 43ba6e3 bcdac9f 2fa7d8f 43ba6e3 2fa7d8f cefc12a 43ba6e3 2fa7d8f cefc12a 43ba6e3 2fa7d8f 0f41986 43ba6e3 2fa7d8f 43ba6e3 0f41986 2fa7d8f 43ba6e3 2fa7d8f 43ba6e3 2fa7d8f 43ba6e3 2fa7d8f 43ba6e3 2fa7d8f cefc12a 2fa7d8f 43ba6e3 2fa7d8f 43ba6e3 2fa7d8f 43ba6e3 2fa7d8f 43ba6e3 2fa7d8f 43ba6e3 2fa7d8f 43ba6e3 2fa7d8f 43ba6e3 2fa7d8f 43ba6e3 2fa7d8f cefc12a 2fa7d8f cefc12a 43ba6e3 2fa7d8f 43ba6e3 2fa7d8f 43ba6e3 cefc12a 2fa7d8f 43ba6e3 2fa7d8f 43ba6e3 2fa7d8f 43ba6e3 2fa7d8f 43ba6e3 2fa7d8f e2c21c6 2fa7d8f cefc12a 43ba6e3 2fa7d8f 43ba6e3 ebafa8f 43ba6e3 2fa7d8f cefc12a 2fa7d8f 43ba6e3 0f41986 2fa7d8f 43ba6e3 2fa7d8f 43ba6e3 2fa7d8f e2c21c6 43ba6e3 2fa7d8f 43ba6e3 2fa7d8f 43ba6e3 2fa7d8f 43ba6e3 2fa7d8f 43ba6e3 2fa7d8f 43ba6e3 2fa7d8f 43ba6e3 0c1a656 2fa7d8f e2c21c6 43ba6e3 2fa7d8f 43ba6e3 2fa7d8f 43ba6e3 2fa7d8f 43ba6e3 bcdac9f 2fa7d8f 5c221dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import gradio as gr
from transformers import pipeline
import PyPDF2
import os
import re
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import torch
# Configuração de diretórios
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
PDF_DIR = os.path.join(BASE_DIR, "pdf_data")
os.makedirs(PDF_DIR, exist_ok=True)
# Inicialização de modelos gratuitos
# Carregando o modelo de geração de texto
device = 0 if torch.cuda.is_available() else -1
summarizer = pipeline(
"summarization",
model="facebook/bart-large-cnn",
device=device
)
# Classe RAG totalmente gratuita
class FreeRAG:
def __init__(self):
self.documents = []
self.vectorizer = TfidfVectorizer(stop_words='english')
self.vectors = None
def clear(self):
self.documents = []
self.vectors = None
def process_text(self, text):
"""Processa e divide o texto em chunks de tamanho razoável"""
# Limpa espaços extras
text = re.sub(r'\s+', ' ', text).strip()
# Divide por parágrafos
paragraphs = text.split('\n')
chunks = []
current_chunk = ""
for p in paragraphs:
p = p.strip()
if not p:
continue
# Se o parágrafo for muito grande, divide-o
if len(p) > 1000:
sentences = re.split(r'(?<=[.!?])\s+', p)
for sentence in sentences:
if len(current_chunk) + len(sentence) < 1000:
current_chunk += " " + sentence
else:
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = sentence
else:
if len(current_chunk) + len(p) < 1000:
current_chunk += " " + p
else:
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = p
if current_chunk:
chunks.append(current_chunk.strip())
return [c for c in chunks if len(c) > 100] # Filtra chunks muito pequenos
def load_pdf(self, file_obj):
"""Carrega um arquivo PDF"""
try:
# Determina o caminho do arquivo
filename = os.path.basename(file_obj.name)
file_path = os.path.join(PDF_DIR, filename)
# Salva o arquivo
with open(file_path, 'wb') as f:
f.write(file_obj.read())
# Extrai o texto
text = ""
with open(file_path, 'rb') as f:
reader = PyPDF2.PdfReader(f)
for page in reader.pages:
page_text = page.extract_text()
if page_text:
text += page_text + "\n"
if not text.strip():
return "Erro: Não foi possível extrair texto do PDF."
# Processa o texto
chunks = self.process_text(text)
if not chunks:
return "Erro: Conteúdo do PDF não pôde ser processado adequadamente."
# Adiciona à base de conhecimento
for chunk in chunks:
self.documents.append({
"source": filename,
"content": chunk
})
# Atualiza vetores TF-IDF
self._update_vectors()
return f"PDF carregado com sucesso: {filename} ({len(chunks)} segmentos)"
except Exception as e:
return f"Erro ao processar PDF: {str(e)}"
def _update_vectors(self):
"""Atualiza os vetores TF-IDF para todos os documentos"""
if not self.documents:
self.vectors = None
return
texts = [doc["content"] for doc in self.documents]
self.vectors = self.vectorizer.fit_transform(texts)
def search(self, query, top_k=3):
"""Busca documentos relevantes para a query"""
if not self.documents or self.vectors is None:
return []
# Vetoriza a query
query_vec = self.vectorizer.transform([query])
# Calcula similaridade
similarity_scores = cosine_similarity(query_vec, self.vectors)[0]
# Encontra os top-k resultados
top_indices = similarity_scores.argsort()[-top_k:][::-1]
results = []
for idx in top_indices:
results.append({
"score": similarity_scores[idx],
"document": self.documents[idx]
})
return results
# Instância do RAG
rag_engine = FreeRAG()
def generate_response(prompt, max_length=300):
"""Gera uma resposta baseada no prompt usando o modelo carregado"""
try:
# Limita o tamanho do prompt para evitar erros
if len(prompt) > 1024:
prompt = prompt[:1024]
# Gera a resposta
response = summarizer(
prompt,
max_length=max_length,
min_length=50,
do_sample=False
)[0]['summary_text']
return response
except Exception as e:
return f"Erro ao gerar resposta: {str(e)}"
def process_query(query, history):
"""Processa uma consulta do usuário"""
# Verifica se há documentos carregados
if not rag_engine.documents:
return "Por favor, carregue alguns PDFs primeiro.", "Nenhum documento carregado."
# Busca documentos relevantes
results = rag_engine.search(query, top_k=3)
# Formata o contexto
context = ""
for i, result in enumerate(results):
context += f"[{i+1}] Documento: {result['document']['source']}\n"
context += f"Trecho: {result['document']['content'][:300]}...\n"
context += f"Relevância: {result['score']:.2f}\n\n"
# Constrói o prompt
prompt = f"""
Com base nos seguintes documentos, responda à pergunta de forma concisa e informativa.
Se a resposta não estiver nos documentos, diga que não há informações suficientes.
DOCUMENTOS:
{context}
PERGUNTA: {query}
RESPOSTA:
"""
# Gera a resposta
response = generate_response(prompt)
return response, context
# Interface Gradio
with gr.Blocks(title="RAG PDF Gratuito") as demo:
gr.Markdown("# Sistema de RAG PDF (Retrieval Augmented Generation)")
gr.Markdown("Carregue PDFs e faça perguntas sobre eles.")
with gr.Tab("Carregar PDFs"):
with gr.Row():
with gr.Column():
pdf_upload = gr.File(
label="Selecionar PDF",
file_types=[".pdf"],
file_count="single"
)
upload_btn = gr.Button("Carregar PDF")
clear_btn = gr.Button("Limpar Base de Conhecimento")
status = gr.Textbox(label="Status", interactive=False)
with gr.Tab("Consultar"):
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(label="Conversa")
query = gr.Textbox(
label="Sua pergunta",
placeholder="Digite sua pergunta sobre os documentos..."
)
submit_btn = gr.Button("Enviar")
with gr.Column(scale=1):
context_box = gr.Textbox(
label="Contexto Recuperado",
interactive=False,
lines=15
)
# Callbacks
def upload_pdf(file):
if file is None:
return "Nenhum arquivo selecionado."
return rag_engine.load_pdf(file)
def clear_knowledge_base():
rag_engine.clear()
return "Base de conhecimento limpa."
def handle_query(question, chat_history):
chat_history = chat_history or []
# Processa a consulta
answer, context = process_query(question, chat_history)
# Atualiza o histórico
chat_history.append((question, answer))
return chat_history, "", context
# Eventos
upload_btn.click(
upload_pdf,
inputs=[pdf_upload],
outputs=[status]
)
clear_btn.click(
clear_knowledge_base,
inputs=[],
outputs=[status]
)
submit_btn.click(
handle_query,
inputs=[query, chatbot],
outputs=[chatbot, query, context_box]
)
query.submit(
handle_query,
inputs=[query, chatbot],
outputs=[chatbot, query, context_box]
)
if __name__ == "__main__":
# Inicializa a interface
demo.launch() |