File size: 1,625 Bytes
8d7e015 ae2057d 652d09f b24003a ae2057d ae22df9 652d09f ae2057d 652d09f ae2057d 652d09f ae2057d 652d09f ae2057d c3d5f77 ae22df9 3e237ad ae22df9 c3d5f77 c17a799 088edb6 c3d5f77 ae2057d 652d09f ae22df9 652d09f ae2057d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import gradio as gr
import numpy as np
import cv2
import tensorflow as tf
import matplotlib
matplotlib.use('Agg')
# Load the model
model = tf.keras.models.load_model('model.h5')
def preprocess_image(image):
resized_img = cv2.resize(image, (180, 180))
img_array = np.array(resized_img).reshape((1, 180, 180, 3))
return img_array
def predict_pneumonia(image):
img_array = preprocess_image(image)
prediction = model.predict(img_array)[0][0]
# Use a more robust threshold for determining whether an image has pneumonia
threshold = 0.7
if prediction >= threshold:
pneumonia_prediction = 1
else:
pneumonia_prediction = 0
# Return the probability of each class
class_probabilities = model.predict(img_array)
# Return the top two possible classifications
top_classes = model.predict_classes(img_array)
return {
"Pneumonia": pneumonia_prediction,
"Class probabilities": class_probabilities,
"Top classes": top_classes
}
inputs = gr.inputs.Image(shape=(180, 180))
outputs = gr.outputs.Label(num_top_classes=2)
gradio_interface = gr.Interface(
fn=predict_pneumonia,
inputs=inputs,
outputs=outputs,
title="Classificação de Pneumonia em Raios-X de Tórax",
description="Esta aplicação classifica imagens de raios-X de tórax em pneumonia e normal.",
examples=[
["person1946_bacteria_4875.jpeg"],
["person1952_bacteria_4883.jpeg"],
["NORMAL2-IM-1427-0001.jpeg"],
["NORMAL2-IM-1431-0001.jpeg"]
],
theme="default",
feedback=True
)
gradio_interface.launch()
|