|
import os |
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import cv2 |
|
import tensorflow as tf |
|
|
|
|
|
model = tf.keras.models.load_model('model.h5') |
|
|
|
def preprocess_image(image): |
|
resized_img = cv2.resize(image, (180, 180)) |
|
img_array = np.array(resized_img).reshape((1, 180, 180, 3)) |
|
return img_array |
|
|
|
def predict_pneumonia(image): |
|
img_array = preprocess_image(image) |
|
prediction = model.predict(img_array)[0][0] |
|
|
|
|
|
threshold = 0.5 |
|
|
|
if prediction >= threshold: |
|
return "Pneumonia" |
|
else: |
|
return "Normal" |
|
|
|
inputs = gr.inputs.Image(shape=(180, 180)) |
|
outputs = gr.outputs.Label(num_top_classes=2) |
|
|
|
gradio_interface = gr.Interface( |
|
fn=predict_pneumonia, |
|
inputs=inputs, |
|
outputs=outputs, |
|
title="Pneumonia X-Ray Classification API", |
|
description="This API classifies images of chest X-rays as having pneumonia or being normal.", |
|
examples=[ |
|
["person1000_bacteria_2931.jpeg"], |
|
["person1000_virus_1681.jpeg"], |
|
["person1946_bacteria_4875.jpeg"], |
|
["person1952_bacteria_4883.jpeg"], |
|
["NORMAL2-IM-1427-0001.jpeg"] |
|
], |
|
theme="default", |
|
allow_flagging=False |
|
) |
|
|
|
gradio_interface.launch() |
|
|